431 resultados para PROGENITORS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The gene transfer efficiency of human hematopoietic stem cells is still inadequate for efficient gene therapy of most disorders. To overcome this problem, a selectable retroviral vector system for gene therapy has been developed for gene therapy of Gaucher disease. We constructed a bicistronic retroviral vector containing the human glucocerebrosidase (GC) cDNA and the human small cell surface antigen CD24 (243 bp). Expression of both cDNAs was controlled by the long terminal repeat enhancer/promoter of the Molony murine leukemia virus. The CD24 selectable marker was placed downstream of the GC cDNA and its translation was enhanced by inclusion of the long 5' untranslated region of encephalomyocarditis virus internal ribosomal entry site. Virus-producing GP+envAM12 cells were created by multiple supernatant transductions to create vector producer cells. The vector LGEC has a high titer and can drive expression of GC and the cell surface antigen CD24 simultaneously in transduced NIH 3T3 cells and Gaucher skin fibroblasts. These transduced cells have been successfully separated from untransduced cells by fluorescence-activated cell sorting, based on cell surface expression of CD24. Transduced and sorted NIH 3T3 cells showed higher GC enzyme activity than the unsorted population, demonstrating coordinated expression of both genes. Fibroblasts from Gaucher patients were transduced and sorted for CD24 expression, and GC enzyme activity was measured. The transduced sorted Gaucher fibroblasts had a marked increase in enzyme activity (149%) compared with virgin Gaucher fibroblasts (17% of normal GC enzyme activity). Efficient transduction of CD34+ hematopoietic progenitors (20-40%) was accomplished and fluorescence-activated cell sorted CD24(+)-expressing progenitors generated colonies, all of which (100%) were vector positive. The sorted, CD24-expressing progenitors generated erythroid burst-forming units, colony-forming units (CFU)-granulocyte, CFU-macrophage, CFU-granulocyte/macrophage, and CFU-mix hematopoietic colonies, demonstrating their ability to differentiate into these myeloid lineages in vitro. The transduced, sorted progenitors raised the GC enzyme levels in their progeny cells manyfold compared with untransduced CD34+ progenitors. Collectively, this demonstrates the development of high titer, selectable bicistronic vectors that allow isolation of transduced hematopoietic progenitors and cells that have been metabolically corrected.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have analyzed the developmental pattern of beta-galactosidase (beta-gal) expression in the cerebral cortex of the beta 2nZ3'1 transgenic mouse line, which was generated using regulatory elements of the beta 2-microglobulin gene and shows ectopic expression in nervous tissue. From embryonic day 10 onward, beta-gal was expressed in the medial and dorsal cortices, including the hippocampal region, whereas lateral cortical areas were devoid of labeling. During the period of cortical neurogenesis (embryonic days 11-17), beta-gal was expressed by selective precursors in the proliferative ventricular zone of the neocortex and hippocampus, as well as by a number of migrating and postmigratory neurons arranged into narrow radial stripes above the labeled progenitors. Thus, the transgene labels a subset of cortical progenitors and their progeny. Postnatally, radial clusters of beta-gal-positive neurons were discernible until postpartum day 10. At this age, the clusters were 250 to 500 microns wide, composed of neurons spanning all the cortical layers and exhibiting several neuronal phenotypes. These data suggest molecular heterogeneity of cortical progenitors and of the cohorts of postmitotic neurons originating from them, which implies intrinsic molecular mosaicism in both cortical progenitors and developing neurons. Furthermore, the data show that neurons committed to the expression of the transgene migrate along very narrow, radial stripes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Selective lodgement or homing of transplanted hemopoietic stem cells in the recipient's bone marrow (BM) is a critical step in the establishment of long-term hemopoiesis after BM transplantation. However, despite its biologic and clinical significance, little is understood about the process of homing. In the present study, we have concentrated on the initial stages of homing and explored the functional role in vivo of some of the adhesion pathways previously found to mediate in vitro adhesion of hemopoietic cells to cultured BM stroma. We have found that homing of murine hemopoietic progenitors of the BM of lethally irradiated recipients at 3 h after transplant was significantly reduced after pretreatment of the donor cells with an antibody to the integrin very late antigen 4 (VLA4). This inhibition of marrow homing was accompanied by an increase in hemopoietic progenitors circulating in the blood and an increased uptake of these progenitors by the spleen. Similar results were obtained by treatment of the recipients with an antibody to vascular cell adhesion molecule 1 (VCAM-1), a ligand for VLA4. Furthermore, we showed that administration of the same antibodies (anti-VLA4 or anti-VCAM-1) to normal animals causes mobilization of hemopoietic progenitors into blood. These data suggest that hemopoietic cell lodgement in the BM is a regulatable process and can be influenced by VLA4/VCAM-1 adhesion pathway. Although additional molecular pathways are not excluded and may be likely, our data establish VCAM-1 as a BM endothelial addressin, analogous to the role that mucosal addressin cell adhesion molecule (MAdCAM) plays in lymphocyte homing. Whether splenic uptake of hemopoietic progenitors is passive or controlled through different mechanisms remains to be clarified. In addition, we provide experimental evidence that homing and mobilization are related phenomena involving, at least partly, similar molecular pathways.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We combine high-resolution Hubble Space Telescope/WFC3 images with multi-wavelength photometry to track the evolution of structure and activity of massive (M_*> 10^10 M_☉) galaxies at redshifts z = 1.4-3 in two fields of the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey. We detect compact, star-forming galaxies (cSFGs) whose number densities, masses, sizes, and star formation rates (SFRs) qualify them as likely progenitors of compact, quiescent, massive galaxies (cQGs) at z = 1.5-3. At z≲2, cSFGs present SFR = 100-200 M_☉ yr^–1, yet their specific star formation rates (sSFR ~ 10^–9 yr^–1) are typically half that of other massive SFGs at the same epoch, and host X-ray luminous active galactic nuclei (AGNs) 30 times (~30%) more frequently. These properties suggest that cSFGs are formed by gas-rich processes (mergers or disk-instabilities) that induce a compact starburst and feed an AGN, which, in turn, quench the star formation on dynamical timescales (few 10^8 yr). The cSFGs are continuously being formed at z = 2-3 and fade to cQGs down to z ~ 1.5. After this epoch, cSFGs are rare, thereby truncating the formation of new cQGs. Meanwhile, down to z = 1, existing cQGs continue to enlarge to match local QGs in size, while less-gas-rich mergers and other secular mechanisms shepherd (larger) SFGs as later arrivals to the red sequence. In summary, we propose two evolutionary tracks of QG formation: an early (z≲2), formation path of rapidly quenched cSFGs fading into cQGs that later enlarge within the quiescent phase, and a late-arrival (z≳2) path in which larger SFGs form extended QGs without passing through a compact state.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The vertebrate body is made by progressive addition of new tissue from progenitors at the posterior embryonic end. Axial extension involves different mechanisms that produce internal organs in the trunk but not in the tail. We show that Gdf11 signaling is a major coordinator of the trunk-to-tail transition. Without Gdf11 signaling, the switch from trunk to tail is significantly delayed, and its premature activation brings the hindlimbs and cloaca next to the forelimbs, leaving extremely short trunks. Gdf11 activity includes activation of Isl1 to promote formation of the hindlimbs and cloaca-associated mesoderm as the most posterior derivatives of lateral mesoderm progenitors. Gdf11 also coordinates reallocation of bipotent neuromesodermal progenitors from the anterior primitive streak to the tail bud, in part by reducing the retinoic acid available to the progenitors. Our findings provide a perspective to understand the evolution of the vertebrate body plan.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adult neural progenitors have been isolated from diverse regions of the CNS using methods which primarily involve the enzymatic digestion of tissue pieces; however, interpretation of these experiments can be complicated by the loss of anatomical resolution during the isolation procedures. We have developed a novel, explant-based technique for the isolation of neural progenitors, Living CNS regions were sectioned using a vibratome and small, well-defined discs of tissue punched out. When Cultured. explants from the cortex, hippocampus, cerebellum, spinal cord, hypothalamus, and caudate nucleus all robustly gave rise to proliferating progenitors. These progenitors were similar in behaviour and morphology to previously characterised multipotent hippocampal progenitor lines. Clones from all regions examined could proliferate from single cells and give rise to secondary neurospheres at a low but consistent frequency. Immunostaining demonstrated that clonal cortical progenitors were able to differentiate into both neurons and glial cells, indicating their multipotent characteristics. These results demonstrate it is possible to isolate anatomically resolved adult neural progenitors from small amounts of tissue throughout the CNS, thus, providing a tool for investigating the frequency and characteristics of progenitor cells from different regions. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Leukemia inhibitory factor (LIF) and its receptor (LIFR) are "twins" of Oncostatin M (OSM) and OSMR, respectively, likely having arisen through gene duplications. We compared their effects in a bone nodule-forming model of in vitro osteogenesis, rat calvaria (RC) cell cultures. Using a dominant-negative LIF mutant (hLIF-05), we showed that in RC cell cultures mouse OSM (mOSM) activates exclusively glycoprotein 130 (gp130)/OSMR. In treatments starting at early nodule formation stage, LIF, mOSM, IL-11, and IL-6 + sIL-6R inhibit bone nodule formation, that is, osteoprogenitor differentiation. Treatment with mOSM, and no other cytokine of the family, in early cultures (day 1-3 or 1-4) increases bone colony numbers. hLIF-05 also dose dependently stimulates bone nodule formation, confirming the inhibitory action of gp130/LIFR on osteogenesis. In pulse treatments at successive stages of bone nodule formation and maturation, LIF blocks osteocalcin (OCN) expression by differentiated osteoblasts, but has no effect on bonesialoprotein (BSP) expression. Mouse OSM inhibits OCN and BSP expression in preconfluent cultures with no or progressively reduced effects at later stages, reflecting the disruption of early nodules, possibly due to the strong apoptotic action of mOSM in RC cell cultures. In summary, LIFR and OSMR display differential effects on differentiation and phenotypic expression of osteogenic cells, most likely through different signal transduction pathways. In particular, gp130/OSMR is the only receptor complex of the family to stimulate osteoprogenitor differentiation in the RC cell culture model. © 2005 Wiley-Liss, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The morphogen Sonic Hedgehog (SHH) plays a critical role in the development of different tissues. In the central nervous system, SHH is well known to contribute to the patterning of the spinal cord and separation of the brain hemispheres. In addition, it has recently been shown that SHH signaling also contributes to the patterning of the telencephalon and establishment of adult neurogenic niches. In this work, we investigated whether SHH signaling influences the behavior of neural progenitors isolated from the dorsal telencephalon, which generate excitatory neurons and macroglial cells in vitro. We observed that SHH increases proliferation of cortical progenitors and generation of astrocytes, whereas blocking SHH signaling with cyclopamine has opposite effects. In both cases, generation of neurons did not seem to be affected. However, cell survival was broadly affected by blockade of SHH signaling. SHH effects were related to three different cell phenomena: mode of cell division, cell cycle length and cell growth. Together, our data in vitro demonstrate that SHH signaling controls cell behaviors that are important for proliferation of cerebral cortex progenitors, as well as differentiation and survival of neurons and astroglial cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The morphogen Sonic Hedgehog (SHH) plays a critical role in the development of different tissues. In the central nervous system, SHH is well known to contribute to the patterning of the spinal cord and separation of the brain hemispheres. In addition, it has recently been shown that SHH signaling also contributes to the patterning of the telencephalon and establishment of adult neurogenic niches. In this work, we investigated whether SHH signaling influences the behavior of neural progenitors isolated from the dorsal telencephalon, which generate excitatory neurons and macroglial cells in vitro. We observed that SHH increases proliferation of cortical progenitors and generation of astrocytes, whereas blocking SHH signaling with cyclopamine has opposite effects. In both cases, generation of neurons did not seem to be affected. However, cell survival was broadly affected by blockade of SHH signaling. SHH effects were related to three different cell phenomena: mode of cell division, cell cycle length and cell growth. Together, our data in vitro demonstrate that SHH signaling controls cell behaviors that are important for proliferation of cerebral cortex progenitors, as well as differentiation and survival of neurons and astroglial cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The extracellular microenvironment in bone marrow (BM) is known to regulate the growth and differentiation of hematopoietic stem and progenitor cells (HSPC). We have developed cell-free matrices from a BM stromal cell line (HS-5), which can be used as substrates either in native form or as tissue engineered coatings, for the enhanced ex vivo expansion of umbilical cord blood (UCB) derived HSPC. The physicochemical properties (surface roughness, thickness, and uniformity) of native and spin coated acellular matrices (ACM) were studied using scanning and atomic force microscopy (SEM and AFM). Lineage-specific expansion of HSPC, grown on these substrates, was evaluated by immunophenotypic (flow cytometry) and functional (colony forming) assays. Our results show that the most efficient expansion of lineage-specific HSPC occurred on spin coated ACM. Our method provides an improved protocol for ex vivo HSPC expansion and it offers a system to study the in vivo roles of specific molecules in the hematopoietic niche that influence HSPC expansion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present spatially resolved Atacama Large Millimeter/submillimeter Array (ALMA) 870 μm dust continuum maps of six massive, compact, dusty star-forming galaxies at z ~ 2.5. These galaxies are selected for their small rest-frame optical sizes (r_e,F160W ~ 1.6 kpc) and high stellar mass densities that suggest that they are direct progenitors of compact quiescent galaxies at z ~ 2. The deep observations yield high far-infrared (FIR) luminosities of L_IR = 10^12.3-12.8 L_⨀ and star formation rates (SFRs) of SFR = 200–700 M_⊙ yr^−1, consistent with those of typical star-forming "main sequence" galaxies. The high spatial resolution (FWHM ~ 0 12–0 18) ALMA and Hubble Space Telescope photometry are combined to construct deconvolved, mean radial profiles of their stellar mass and (UV+IR) SFR. We find that the dusty, nuclear IR–SFR overwhelmingly dominates the bolometric SFR up to r ~ 5 kpc, by a factor of over 100× from the unobscured UV–SFR. Furthermore, the effective radius of the mean SFR profile (r_e,SFR ~ 1 kpc) is ~30% smaller than that of the stellar mass profile. The implied structural evolution, if such nuclear starburst last for the estimated gas depletion time of Δt = ±100 Myr, is a 4×increase of the stellar mass density within the central 1 kpc and a 1.6× decrease of the half-mass–radius. This structural evolution fully supports dissipation-driven, formation scenarios in which strong nuclear starbursts transform larger, star-forming progenitors into compact quiescent galaxies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

TET2 is a tumor suppressor gene that has been implicated in the epigenetic regulation of gene expression. Inactivating TET2 mutations are common in MDS. These mutations may contribute to early clonal dominance and myeloid transformation, although the exact mechanisms remain to be elucidated. Common to the environment of MDS are elevations in cytokines, such as TNFα and IFN-γ. It was hypothesized that inflammatory cytokines TNF-α and IFN-γ may promote clonal expansion of TET2 mutant progenitors. Adult (10-14 weeks-old) Tet2 wild type (+/+) and Tet2 mutant (-/-) C57BL/6 mice strains were chosen as a model system. Lineage negative cells (Lin-), enriched for hematopoietic stem and progenitor cells, were isolated from Tet2 +/+ and -/- bone marrow and cultured in the absence or presence of varying concentrations of TNFα or IFN-γ in methylcellulose colony formation assays and long term cell culture assays, over a period of 12 and 30 days respectively, and their colony growth, cell count, immunophenotype and resistance to apoptosis were examined. Where indicated, serial re-plating was performed. Expression of apoptotic regulators was assessed by qRT-PCR. In the triplicate experiments, starting with equal densities of Tet2 +/+ and -/- Lin- cells, Tet2 -/- Lin- cells displayed increased resistance to cytokine-induced growth suppression and superior colony forming ability over +/+ in the serial re-plating assays under stress of increasing TNFα or IFN γ. Tet2 -/- progenitors also displayed a lower apoptotic index compared to +/+ under stress of increasing TNFα, suggesting increased resistance to TNFα induced apoptosis. Transcriptional data showed low expression of Tnfr1, Fas and caspase 8, as well as a high expression of Bcl-2 and Iap1 in Tet2 -/- compared to +/+ under stress of TNFα. Tet2-/- also showed increased basal expression of endogenous TNFα mRNA compared to +/+. In the human colony growth assay, the clonal growth of TET2 mutant CFU-GM progenitors was enhanced at low TNFα concentrations. Conclusion: Mutations that promote resistance to environmental stem cell stressors are a known mechanism of clonal selection in aplastic anaemia and JAK2-mutant MPN and our findings suggest that this mechanism may be critical to clonal selection and dominance in MDS.