140 resultados para PREVOTELLA-NIGRESCENS
Resumo:
Objective Ankylosing spondylitis (AS) is a common, highly heritable immune-mediated arthropathy that occurs in genetically susceptible individuals exposed to an unknown but likely ubiquitous environmental trigger. There is a close relationship between the gut and spondyloarthritis, as exemplified in patients with reactive arthritis, in whom a typically self-limiting arthropathy follows either a gastrointestinal or urogenital infection. Microbial involvement in AS has been suggested; however, no definitive link has been established. The aim of this study was to determine whether the gut in patients with AS carries a distinct microbial signature compared with that in the gut of healthy control subjects. Methods Microbial profiles for terminal ileum biopsy specimens obtained from patients with recent-onset tumor necrosis factor antagonist-naive AS and from healthy control subjects were generated using culture-independent 16S ribosomal RNA gene sequencing and analysis techniques. Results Our results showed that the terminal ileum microbial communities in patients with AS differ significantly (P < 0.001) from those in healthy control subjects, driven by a higher abundance of 5 families of bacteria (Lachnospiraceae [P = 0.001], Ruminococcaceae [P = 0.012], Rikenellaceae [P = 0.004], Porphyromonadaceae [P = 0.001], and Bacteroidaceae [P = 0.001]) and a decrease in the abundance of 2 families of bacteria (Veillonellaceae [P = 0.01] and Prevotellaceae [P = 0.004]). Conclusion We show evidence for a discrete microbial signature in the terminal ileum of patients with AS compared with healthy control subjects. The microbial composition was demonstrated to correlate with disease status, and greater differences were observed between disease groups than within disease groups. These results are consistent with the hypothesis that genes associated with AS act, at least in part, through effects on the gut microbiome.
Resumo:
Twenty macropods from five locations in Queensland, Australia, grazing on a variety of native pastures were surveyed and the bacterial community of the foregut was examined using 454-amplicon pyrosequencing. Specifically, the V3/V4 region of 16S rRNA gene was examined. A total of 5040 OTUs were identified in the data set (post filtering). Thirty-two OTUs were identified as 'shared' OTUS (i.e. present in all samples) belonging to either Firmicutes or Bacteroidetes (Clostridiales/Bacteroidales). These phyla predominated the general microbial community in all macropods. Genera represented within the shared OTUs included: unclassified Ruminococcaceae, unclassified Lachnospiraceae, unclassified Clostridiales, Peptococcus sp. Coprococcus spp., Streptococcus spp., Blautia sp., Ruminoccocus sp., Eubacterium sp., Dorea sp., Oscillospira sp. and Butyrivibrio sp. The composition of the bacterial community of the foregut samples of each the host species (Macropus rufus, Macropus giganteus and Macropus robustus) was significantly different allowing differentiation between the host species based on alpha and beta diversity measures. Specifically, eleven dominant OTUs that separated the three host species were identified and classified as: unclassified Ruminococcaceae, unclassified Bacteroidales, Prevotella spp. and a Syntrophococcus sucromutans. Putative reductive acetogens and fibrolytic bacteria were also identified in samples. Future work will investigate the presence and role of fibrolytics and acetogens in these ecosystems. Ideally, the isolation and characterization of these organisms will be used for enhanced feed efficiency in cattle, methane mitigation and potentially for other industries such as the biofuel industry.
Resumo:
Kangaroos ferment forage material in an enlarged forestomach analogous to the rumen, but in contrast to ruminants, they produce little or no methane. The objective of this study was to identify the dominant organisms and pathways involved in hydrogenotrophy in the kangaroo forestomach, with the broader aim of understanding how these processes are able to predominate over methanogenesis. Stable isotope analysis of fermentation end products and RNA stable isotope probing (RNA-SIP) were used to investigate the organisms and biochemical pathways involved in the metabolism of hydrogen and carbon dioxide in the kangaroo forestomach. Our results clearly demonstrate that the activity of bacterial reductive acetogens is a key factor in the reduced methane output of kangaroos. In in vitro fermentations, the microbial community of the kangaroo foregut produced very little methane, but produced a significantly greater proportion of acetate derived from carbon dioxide than the microbial community of the bovine rumen. A bacterial operational taxonomic unit closely related to the known reductive acetogen Blautia coccoides was found to be associated with carbon dioxide and hydrogen metabolism in the kangaroo foregut. Other bacterial taxa including members of the genera Prevotella, Oscillibacter and Streptococcus that have not previously been reported as containing hydrogenotrophic organisms were also significantly associated with metabolism of hydrogen and carbon dioxide in the kangaroo forestomach.The ISME Journal advance online publication, 13 March 2014; doi:10.1038/ismej.2014.25.
Resumo:
O presente trabalho tem por objetivo investigar a microbiota de canais radiculares que apresentem lesão perirradicular e relacionar o perfil microbiano detectado com a área/volume destas lesões visualizadas por radiografias periapicais e tomografias computadorizadas tipo cone-beam. Foram selecionados 19 dentes com infecção endodôntica primária. As amostras microbiológicas foram coletadas dos canais com o auxílio de limas tipo Hedströen e cones de papel absorvente estéril. A técnica do Checkerboard DNA-DNA hybridization foi utilizada para detecção de até 79 espécies bacterianas em cada amostra, utilizando sondas de DNA específicas. Os dados microbiológicos foram expressos em percentagem média (prevalência), proporção e nível médio de cada espécie em cada amostra. Os testes t independente e de correlação de Pearson foram usados para correlacionar a contagem das bactérias testadas com os dados clínicos (p≤ 0,05). Foi encontrada uma média de 17 espécies por amostra. E. brachy (70%), S. pneumonia (67,5%), P. oris (67,5%), E. faecium (65%), N. gonorrhoeae (62,5%), K. pneumoniae (62,5%), P. melaninogenica (62,5%), P. nigrescens (62,5%) e P. micra (62,5%) foram as espécies mais prevalentes, e as espécies encontradas em níveis médios mais altos foram P. oris (7,5 x 105), E. brachy (7,3 x 105), E. faecium (7,2 x 105), K. pneumoniae (7,0 x 105), N. gonorrhoeae (6,8 x 105), S. epidermidis (6,5 x 105) e H. pylori (6,5 x 105). Houve correlação positiva entre as lesões periapicais de maior área e contagens significativamente mais altas da carga bacteriana total e de bactérias Gram-negativas (p<0,05). Baseado nos resultados obtidos é possível concluir que a microbiota presente em dentes com periodontite apical primária possui perfil misto e complexo, e que uma maior tamanho de lesão perirradicular pode estar associada a contagem elevada espécie totais e bactérias Gram-negativas.
Resumo:
Las algas que proliferan en el fondo marino se denominan macroalgas marinas bentónicas y se clasifican en tres grandes grupos: las rojas (Rhodophyta), las de color pardo (Phaeophyta o Phucophyta) y las verdes (Chlorophyta). Cuando las plantas forman grandes poblaciones -como los bosques de Macrocystis pyrifera o las praderas de Lessonia nigrescens o Durvillaea antarctica - se las puede observar aun en los momentos de marea alta. Este artículo de divulgación científica incluye información sobre las características morfológicas, las provincias fitogeográficas, la distribución geográfica, y la biodiversidad existente en las principales macroalgas de la Argentina (océano Atlántico sudoccidental), así como otras lecturas sugeridas sobre la temática.
Resumo:
The Austrian-Ceylonese hydrobiological mission studied 38 biotopes; 28 of which contain Odonata. From the Zygoptera the Calopterydoidea seem to be the dominant form (22 habitats), while the Coenagrionoidea are scarcer (11 habitats). The most frequent species was Euphaea splendens (Epallagidae - 16 habitats) followed by Vestolis apicalis nigrescens (Calopterygidae, 8 habitats) and Neurobasis chinensis (Calopterygidae, 6 habitats). From the Anisoptera Zygonyx ceylanica (Libellulidae: Zygonictinae) was the dominant form (8 habitats), but some Libellulinae remain undescribed. The number of species varied greatly between different biotopes. The biotopes containing Odonata are small brooks, in which the pH was mostly on the limit between acid and alkaline reaction. They are fast running waters, situated in most cases on lower or middle elevations, only three species being found in higher elevations (1800-2000 m). Adaptations to fast currents and other factors are described.
Resumo:
Monografia apresentada à Universidade Fernando Pessoa para obtenção do grau de Licenciada em Medicina Dentária.
Resumo:
Rationale: Pulmonary infection in cystic ?brosis (CF) is polymicrobial and it is possible that anaerobic bacteria, not detected by routine aerobic culture methods, reside within infected anaerobic airway
mucus.
Objectives: To determine whether anaerobic bacteria are present in the sputum of patients with CF.
Methods: Sputum samples were collected from clinically stable adults with CF and bronchoalveolar lavage ?uid (BALF) samples from children with CF. Induced sputum samples were collected from healthy volunteers who did not have CF. All samples were processed using anaerobic bacteriologic techniques and bacteria within the samples were quanti?ed and identi?ed.
Measurements and Main Results: Anaerobic species primarily within the genera Prevotella,Veillonella, Propionibacterium, andActinomyces were isolated in high numbers from 42 of 66 (64%) sputum samples from adult patients with CF. Colonization with Pseudomonas aeruginosa signi?cantly increased the likelihood that anaerobic bacteria would be present in the sputum. Similar anaerobic species were identi?ed in BALF from pediatric patients with CF. Although anaerobes were detected in induced sputum samples from 16 of 20 volunteers, they were present in much lower numbers and were
generally different species compared with those detected in CF sputum. Species-dependent differences in the susceptibility of the anaerobes to antibiotics with known activity against anaerobes were apparent with all isolates susceptible to meropenem.
Conclusions: A range of anaerobic species are present in large numbers in the lungs of patients with CF. If these anaerobic bacteria are contributing signi?cantly to infection and in?ammation in the CF
lung, informed alterations to antibiotic treatment to target anaerobes, in addition to the primary infecting pathogens, may improve management.
Resumo:
A monospecific polyclonal antiserum, prepared against Bacteroides fragilis common polysaccharide antigen purified by polyacrylamide gel immunoblot detected B. fragilis, B. thetaiotaomicron, B. ovatus and Prevotella melaninogenica in pus samples from various anatomical sites by immunofluorescence microscopy of the pus. With standard clinical laboratory culture methods, 36% of 147 samples were positive for one or more of the above bacteria. Of these, B. fragilis accounted for 33%. By immunofluorescent labelling of pus with the common antigen antiserum the detection of these bacteria in the samples increased to 50%. All nine of the blood cultures in which B. fragilis was detected by culture contained bacteria positive for the common antigen. Immunofluorescent labelling of pus samples with a selection of monoclonal antibodies specific for surface polysaccharides which are known to be antigenically variable in culture in vitro and in an animal model of infection showed that these polysaccharides are also variable in natural infection. The results indicate that the common polysaccharide antigen, in contrast to the variable surface polysaccharides, is a suitable target for the immunodetection of B, fragilis in clinical samples from a range of anatomical sites.
Resumo:
Cystic fibrosis (CF) is characterized by defective mucociliary clearance and chronic airway infection by a complex microbiota. Infection, persistent inflammation and periodic episodes of acute pulmonary exacerbation contribute to an irreversible decline in CF lung function. While the factors leading to acute exacerbations are poorly understood, antibiotic treatment can temporarily resolve pulmonary symptoms and partially restore lung function. Previous studies indicated that exacerbations may be associated with changes in microbial densities and the acquisition of new microbial species. Given the complexity of the CF microbiota, we applied massively parallel pyrosequencing to identify changes in airway microbial community structure in 23 adult CF patients during acute pulmonary exacerbation, after antibiotic treatment and during periods of stable disease. Over 350,000 sequences were generated, representing nearly 170 distinct microbial taxa. Approximately 60% of sequences obtained were from the recognized CF pathogens Pseudomonas and Burkholderia, which were detected in largely non-overlapping patient subsets. In contrast, other taxa including Prevotella, Streptococcus, Rothia and Veillonella were abundant in nearly all patient samples. Although antibiotic treatment was associated with a small decrease in species richness, there was minimal change in overall microbial community structure. Furthermore, microbial community composition was highly similar in patients during an exacerbation and when clinically stable, suggesting that exacerbations may represent intrapulmonary spread of infection rather than a change in microbial community composition. Mouthwash samples, obtained from a subset of patients, showed a nearly identical distribution of taxa as expectorated sputum, indicating that aspiration may contribute to colonization of the lower airways. Finally, we observed a strong correlation between low species richness and poor lung function. Taken together, these results indicate that the adult CF lung microbiome is largely stable through periods of exacerbation and antibiotic treatment and that short-term compositional changes in the airway microbiota do not account for CF pulmonary exacerbations.
Resumo:
RATIONALE: Characterization of bacterial populations in infectious respiratory diseases will provide improved understanding of the relationship between the lung microbiota, disease pathogenesis and treatment outcomes.
OBJECTIVES: To comprehensively define lung microbiota composition during stable disease and exacerbation in bronchiectasis patients.
METHODS: Sputum was collected from patients when clinically stable and before and after completion of antibiotic treatment of exacerbations. Bacterial abundance and community composition were analyzed using anaerobic culture and 16S rDNA pyrosequencing.
MEASUREMENTS AND MAIN RESULTS: In clinically stable patients, aerobic and anaerobic bacteria were detected in 40/40 (100%) and 33/40 (83%) sputum samples, respectively. The dominant organisms cultured were P. aeruginosa (n=10 patients), H. influenzae (n=12), Prevotella (n=18) and Veillonella (n=13). Pyrosequencing generated over 150,000 sequences, representing 113 distinct microbial taxa; the majority of observed community richness resulted from taxa present in low abundance with similar patterns of phyla distribution in clinically stable patients and patients at the onset of exacerbation. Following treatment of exacerbation, there was no change in total (p=0.925), aerobic (p=0.917) or anaerobic (p=0.683) load and only a limited shift in community composition. Agreement for detection of bacteria by culture and pyrosequencing was good for aerobic bacteria such as P. aeruginosa (kappa=0.84) but poorer for other genera including anaerobes. Lack of agreement was largely due to bacteria been detected by pyrosequencing but not by culture.
CONCLUSIONS: A complex microbiota is present in the lungs of bronchiectasis patients which remains stable through treatment of exacerbations suggesting that changes in microbiota composition do not account for exacerbations.