908 resultados para PP SEBS BLENDS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polypyrrole was synthesized by chemical oxidation of pyrrole in water containing various sulphonic acids like toluene sulphonic acid (TSA), sulphosalicylic acid (SSA), and camphor sulphonic acid (CSA), as well as a combination of each sulphonic acid with sodium dodecyl benzene sulphonate (NaDBS) to investigate the effect of doping on conductivity, yield, and processability of the conducting polymer. Free-standing blend films of polypyrrole and plasticized polyvinyl chloride (PVC) were obtained by casting an homogeneous suspension of the two polymers in tetrahydrofuran. The maximum conductivity of the blend film is similar to 0.3 S/cm, corresponding to a weight fraction of 0.16 w/w polypyrrole. The blend film is semiconducting in the range 300-10 K. A TG-DTA scan indicates the blend film to be amorphous with a stepwise decomposition process similar to pristine PVC. The choice of a dual dopant system during synthesis and the plasticised polymer during subsequent processing were keys to obtaining homogeneous high-quality films. (C) 2001 John Wiley & Sons, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tapioca starch in both glycerol-plasticized and in unplasticized states was blended with high-density polyethylene (HDPE) using HDPE-g-maleic anhydride as the compatibilizer. The impact and tensile properties of the blends were measured according to ASTM methods. The results reveal that blends containing plasticized starch have better mechanical properties than those containing unplasticized starch. High values of elongation at break at par with those of virgin HDPE could be obtained for blends, even with high loading of plasticized starch. Morphological studies by SEM microscopy of impact-fractured specimens of such blends revealed a ductile fracture, unlike blends with unplasticized starch at such high loadings, which showed brittle fracture, even with the addition of compatibilizer. In general, blends of HDPE and plasticized starch with added compatibilizer show better mechanical properties than similar blends containing unplasticized starch. (C) 2001 John Wiley & Sons, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The focus of this work is the evaluation and analysis of the state of dispersion of functionalized multiwall carbon nanotubes (CNTs), within different morphologies formed, in a model LCST blend (poly[(alpha-methylstyrene)-co-(acrylonitrile)]/poly(methyl-methacryla te), P alpha MSAN/PMMA). Blend compositions that are expected to yield droplet-matrix (85/15 P alpha MSAN/PMMA and 15/85 P alpha MSAN/PMMA, wt/wt) and co-continuous morphologies (60/40 P alpha MSAN/PMMA, wt/wt) upon phase separation have been combined with two types of CNTs; carboxylic acid functionalized (CNTCOOH) and polyethylene modified (CNTPE) up to 2 wt%. Thermally induced phase separation in the blends has been studied in-situ by rheology and dielectric (conductivity) spectroscopy in terms of morphological evolution and CNT percolation. The state of dispersion of CNTs has been evaluated by transmission electron microscopy. The experimental results indicate that the final blend morphology and the surface functionalization of CNT are the main factors that govern percolation. In presence of either of the CNTs, 60/40 P alpha MSAN/PMMA blends yield a droplet-matrix morphology rather than co-continuous and do not show any percolation. On the other hand, both 85/15 P alpha MSAN/PMMA and 15/85 P alpha MSAN/PMMA blends containing CNTPEs show percolation in the rheological and electrical properties. Interestingly, the conductivity spectroscopy measurements demonstrate that the 15/85 P alpha MSAN/PMMA blends with CNTPEs that show insulating properties at room temperature for the miscible blends reveal highly conducting properties in the phase separated blends (melt state) as a result of phase separation. By quenching this morphology, the conductivity can be retained in the blends even in the solid state. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work reports the measured spray structure and droplet size distributions of ethanol-gasoline blends for a low-pressure, multi-hole, port fuel injector (PFI). This study presents previously unavailable data for this class of injectors which are widely used in automotive applications. Specifically, gasoline, ethanol, and gasoline-ethanol blends containing 10%, 20% and 50% ethanol were studied using laser backlight imaging, and particle/droplet image analysis (PDIA) techniques. The fuel mass injected, spray structure and tip penetrations, droplet size distributions, and Sauter mean diameter were determined for the blends, at two different injection pressures. Results indicate that the gasoline and ethanol sprays have similar characteristics in terms of spray progression and droplet sizes in spite of the large difference in viscosity. It appears that the complex mode of atomization utilized in these injectors involving interaction of multiple fuel jets is fairly insensitive to the fuel viscosity over a range of values. This result has interesting ramifications for existing gasoline fuel systems which need to handle blends and even pure ethanol, which is one of the renewable fuels of the future. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main theme of this paper is to study the flammability suppression of hydrocarbons by blending with carbon dioxide, and to evaluate these mixtures as possible working fluids in organic Rankine cycle for medium temperature concentrated solar power applications. The analysis takes into account inevitable irreversibilities in the turbine, the pump, and heat exchangers. While the isopentane + CO2 mixture suffers from high irreversibility mainly in the regenerator owing to a large temperature glide, the propane + CO2 mixture performs more or less the same as pure propane albeit with high cycle pressures. In general, large temperature glides at condensing pressures extend the heat recovery into the two-phase dome, which is an advantage. However, at the same time, the shift of the pinch point towards the warm end of the regenerator is found to be a major cause of irreversibility. In fact, as the number of carbon atoms in alkanes decreases, their blend with CO2 moves the pinch point to the colder end of the regenerator. This results in lower entropy generation in the regenerator and improved cycle efficiency of propane + CO2 mixtures. With this mixture, real cycle efficiencies of 15-18% are achievable at a moderate source temperature of 573 K. Applicability for a wide range of source temperatures is found to be an added advantage of this mixture.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Crystallization-induced phase separation and segmental relaxations in poly(vinylidene fluoride)/poly(methyl methacrylate) (PVDF/PMMA) blends was systematically investigated by melt-rheology and broadband dielectric spectroscopy in the presence of multiwall carbon nanotubes (MWNTs). Different functionalized MWNTs (amine, -NH2; acid, -COOH) were incorporated in the blends by melt-mixing above the melting temperature of PVDF, where the blends are miscible, and the crystallization induced phase separation was probed in situ by shear rheology. Interestingly, only -NH2 functionalized MWNTs (a-MWNTs) aided in the formation of beta-phase (trans-trans) crystals in PVDF, whereas both the neat blends and the blends with -COOH functionalized MWNTs (c-MWNTs) showed only alpha-phase (trans-gauche-trans-gauche') crystals as inferred from wide-angle X-ray diffraction (WXRD) and Fourier transform infrared (FTIR). Furthermore, blends with only a-MWNTs facilitated in heterogeneous nucleation in the blends manifesting in an increase in the calorimetric crystallization temperature and hence, augmented the theologically determined crystallintion induced phase separation temperature. The dielectric relaxations associated with the crystalline phase of PVDF (alpha(c)) was completely absent in the blends with a-MWNTs in contrast to neat blends and the blends with c-MWNTs in the dielectric loss spectra. The relaxations in the blends investigated here appeared to follow Havriliak-Negami (HN) empirical equations, and, more interestingly, the dynamic heterogeneity in the system could be mapped by an extra relaxation at higher frequency at the crystallization-induced phase separation temperature. The mean relaxation time (tau(HN)) was evaluated and observed to be delayed in the presence of MWNTs in the blends, more prominently in the case of blends with a-MWNTs. The latter also showed a significant increase in the dielectric relaxation strength (Delta epsilon). Electron microscopy and selective etching was used to confirm the localization of MWNTs in the amorphous phases of the interspherulitic regions as observed from scanning electron microscopy (SEM). The evolved crystalline morphology, during crystallization-induced phase separation, was observed to have a strong influence on the charge transport processes in the blends. These observations were further supported by the specific interactions (like dipole induced dipole interaction) between a-MWNTs and PVDF, as inferred from FTIR, and the differences in the crystalline morphology as observed from WXRD and polarized optical microscopy (POM).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of multiwalled carbon nanotubes (MWNTs) on the concentration fluctuations, interfacial driven elasticity, phase morphology, and local segmental dynamics of chains for near-critical compositions of polystyrene/poly(vinyl to methyl ether) (PS/PVME) blends were systematically investigated using dynamic shear rheology and dielectric spectroscopy. The contribution of the correlation length (xi) of the concentration fluctuations to the evolving stresses was monitored in situ to probe the different stages of demixing in the blends. The classical upturn in the dynamic moduli was taken as the rheological demixing temperature (T-rheo), which was also observed to be in close agreement with those obtained using concentration fluctuation variance, <(delta phi)(2)>, versus temperature curves. Further, Fredrickson and Larson's approach involving the mean-field approximation and the double-reptation self-concentration (DRSC) model was employed to evaluate the spinodal decomposition temperature (T-s). Interestingly, the values of both T-rheo and T-s shifted upward in the blends in the presence of MWNTs, manifesting in molecular-level miscibility. These phenomenal changes were further observed to be a function of the concentration of MWNTs. The evolution of morphology as a function of temperature was studied using polarized optical microscopy (POM). It was observed that PVME, which evolved as an interconnected network during the early stages of demixing, coarsened into a matrix-droplet morphology in the late stages. The preferential wetting of PVME onto MWNTs as a result of physicochemical interactions retained the interconnected network of PVME for longer time scales, as supported by POM and atomic force microscopy (AFM) images. Microscopic heterogeneity in macroscopically miscible systems was studied by dielectric relaxation spectroscopy. The slowing of segmental relaxations in PVME was observed in the presence of both ``frozen'' PS and MWNTs interestingly at temperatures much below the calorimetric glass transition temperature (T-g). This phenomenon was observed to be local rather than global and was addressed by monitoring the evolution of the relaxation spectra near and above the demixing temperature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Surface-functionalized multiwall carbon nanotubes (MWCNTs) are incorporated in poly(methyl methacrylate)/styrene acrylonitrile (PMMA/SAN) blends and the pretransitional regime is monitored in situ by melt rheology and dielectric spectroscopy. As the blends exhibit weak dynamic asymmetry, the obvious transitions in the melt rheology due to thermal concentration fluctuations are weak. This is further supported by the weak temperature dependence of the correlation length ( approximate to 10-12 angstrom) in the vicinity of demixing. Hence, various rheological techniques in both the temperature and frequency domains are adopted to evaluate the demixing temperature. The spinodal decomposition temperature is manifested in an increase in the miscibility gap in the presence of MWCNTs. Furthermore, MWCNTs lead to a significant slowdown of the segmental dynamics in the blends. Thermally induced phase separation in the PMMA/SAN blends lead to selective localization of MWCNTs in the PMMA phase. This further manifests itself in a significant increase in the melt conductivity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The dispersion state of multiwall carbon nanotubes (MWNTs) in melt mixed polyethylene/polyethylene oxide (PE/PEO) blends has been assessed by both surface and volume electrical conductivity measurements and the structural relaxations have been assessed by broadband dielectric spectroscopy. The selective localization of MWNTs in the blends was controlled by the flow characteristics of the components, which led to their localization in the energetically less favored phase (PE). The electrical conductivity and positive temperature co-efficient (PTC) measurements were carried out on hot pressed samples. The neat blends exhibited only a negative temperature coefficient (NTC) effect while the blends with MWNTs exhibited both a PTC and a NTC at the melting temperatures of PE and PEO respectively. These phenomenal changes were corroborated with the different crystalline morphology in the blends. It was deduced that during compression molding, the more viscous PEO phase spreads less in contrast to the less viscous PE phase. This has further resulted in a gradient in morphology as well as the distribution state of the MWNTs in the samples and was supported by scanning electron and scanning acoustic microscopy (SAM) studies and contact angle measurements. SAM from different depths of the samples revealed a gradient in the microstructure in the PE/PEO blends which is contingent upon the flow characteristics of the components. Interestingly, the surface and volume electrical conductivity was different due to the different dispersion state of the MWNTs at the surface and bulk. The observed surface and volume electrical conductivity measurements were corroborated with the evolved morphology during processing. The structural relaxations in both PE and PEO were discerned from broadband dielectric spectroscopy. The segmental dynamics below and above the melting temperature of PEO were significantly different in the presence of MWNTs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Structural dynamics, dielectric permittivity and ferroelectric properties in poly(vinylidene fluoride) (PVDF)/poly(methyl methacrylate) (PMMA) (PVDF/PMMA) blends with respect to crystalline morphology was systematically investigated in presence of amine functionalized MWNTs (NH2-MWNTs) using dielectric spectroscopy. The crystalline morphology and the crystallization driven demixing in the blends was assessed by light microscopy (LM), wide angle X-ray diffraction (WXRD) and, in situ, by shear rheology. The crystal nucleation activity of PVDF was greatly induced by NH2-MWNTs, which also showed two distinct structural relaxations in dielectric loss owing to mobility confinement of PVDF chains and smaller cooperative lengths. The presence of crystal-amorphous interphase was supported by the presence of interfacial polarization at lower frequencies in the dielectric loss spectra. On contrary, the control blends showed a single broad relaxation at higher frequency due to defective crystal nuclei. This was further supported by monitoring the dielectric relaxations during isothermal crystallization of PVDF in the blends. These observations were addressed with respect to the spherulite sizes which were observed to be larger in case of blends with NH2-MWNTs. Higher dielectric permittivity with minimal losses was also observed in blends with NH2-MWNTs as compared to neat PVDF. Polarization obtained using P-E (polarization-electric field) hysteresis loops was higher in case of blends with NH2-MWNTs in contrast to control blends and PVDF. These observations were corroborated with the charge trapped at the crystal-amorphous interphase and larger crystal sizes in the blends with NH2-MWNTs. The microstructure and localization of MWNTs were assessed using SEM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of silver nanoparticles (nAg) in PS/PVME polystyrene/poly(vinyl methyl ether)] blends was studied with respect to the evolution of morphology, demixing temperature, and segmental dynamics. In the early stage of demixing, PVME developed an interconnected network that coarsened in the late stage. The nAg induced miscibility in the blends as supported by shear rheological measurements. The physicochemical processes that drive phase separation in blends also led to migration of nAg to the PVME phase as supported by AFM. The segmental dynamics was greatly influenced by the presence of nAg due to the specific interaction of nAg with PVME. Slower dynamics and an increase in intermolecular cooperativity in the presence of nAg further supported the role of nAg in delaying the phase separation processes and augmenting the demixing temperature in the blends. Different theoretical models were assessed to gain insight into the dynamic heterogeneity in PS/PVME blends at different length scales.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Intermolecular cooperativity and structural relaxations in PVDF/PMMA blends were studied in this work with respect to different surface modified (amine, similar to NH2; carboxyl acid, similar to COOH and pristine) multiwalled nanotubes (MWNTs) at 1 wt % near blend's T-g and in the vicinity of demixing using dielectric spectroscopy, SAXS, DSC, and WAXD. Intermolecular cooperativity at T-g and configurational entropy was addressed in the framework of cooperative rearranging region (CRR) at T-g. Because of specific interactions between PVDF and NH2-MWNTs, the local composition fluctuates at its average value resulting in a broad T-g. The scale of cooperativity (xi(CRR)) and the number of segments in the cooperative volume (N-CRR) is comparatively smaller in the blends with NH2-MWNTs. This clearly suggests that the number of segments cooperatively relaxing is reduced in the blends due to specific interactions leading to more heterogeneity. The configurational entropy at T-g, as derived from Vogel-Fulcher and Adam-Gibbs analysis, was reduced in the blends in presence of MWNTs manifesting in entropic penalty of the chains. The crystallite size and the amorphous miscibility was evaluated using SAXS and was observed to be strongly contingent on the surface functional groups on MWNTs. Three distinct relaxations-alpha(c) due to relaxations in the crystalline phase of PVDF, alpha(m) indicating the amorphous miscibility in PVDF/PMMA blends, and alpha beta concerning the segmental dynamics of PMMA-were observed in the blends in the temperature range T-g < T < T-c. The dynamics as well as the nature of relaxations were observed to be dependent the surface functionality on the MWNTs. The dielectric permittivity was also enhanced in presence of MWNTs, especially with NH2-MWNTs, with minimal losses. The influence of the MWNTs on the spherulite size and crystalline morphology of the blends was also confirmed by POM and SEM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Graphene oxide and reduced graphene oxide (r-GO) were synthesized by wet chemistry and the effect of r-GO in PS-PVME blends was investigated here with respect to phase miscibility, intermolecular cooperativity in the glass transition region and concentration fluctuation variance by shear rheology and dielectric spectroscopy. The spinodal decomposition temperature (T-s) and correlation length were evaluated from isochronal temperature scans in shear rheology. The r-GO is shown to induce miscibility in the blends, which may lead to increased local heterogeneity in the blends, though the length of cooperatively re-arranged regions (xi) at T-g is more or less unaltered. The evolution of the phase morphology as a function of temperature was assessed using polarized optical microscopy (POM). In the case of the 60/40 PS-PVME blends with 0.25 wt% r-GO, apart from significant refinement in the morphology, retention of the interconnected ligaments of PVME was observed, even in the late stages of phase separation suggesting that the coarsening of the phase morphology has been slowed down in the presence of r-GO. This phenomenon was also supported by AFM. Surface enrichment of PVME, owing to its lower surface tension, in the demixed samples was supported by XPS scans. The interconnected network of PVME has resulted in significantly higher permittivity in the bi-phasic blends, although the concentration of r-GO is below the percolation threshold.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polyolefin based blends have tremendous commercial importance in view of their exceptional properties. In this study the interface of a biphasic polymer blend of PE (polyethylene) and PEO (polyethylene oxide) has been tailored to reduce the interfacial tension between the phases and to render finer morphology. This was accomplished by employing various strategies like addition of maleated PE (PE grafted maleic anhydride), immobilizing PE chains, ex situ, onto MWNTs by covalent grafting, and in situ grafting of PE chains onto MWNTs during melt processing. Multiwalled nanotubes (MWNTs) with different surface functional groups have been synthesized either a priori or were facilitated during melt mixing at higher temperature. NH2 terminated MWNTs were synthesized by grafting ethylene diamine (EDA) onto carboxyl functionalized carbon nanotubes (COOH(MWNTs) and further, was used to reactively couple with maleated PE to immobilize PE chains on the surface of MWNTs. The covalent coupling of maleated PE with NH2 terminated MWNTs was also realized in situ in the melt extruder at high temperature. Both NH2 terminated MWNTs and the in situ formed PE brush on MWNTs during melt mixing, revealed a significant improvement in the mechanical properties of the blend besides remarkably improving the dispersion of the minor phase (PEO) in the blends. Structural properties of the composites were evaluated and the tensile fractured morphology was assessed using scanning electron microscopy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The localization and dispersion quality of as received NH2 terminated multiwall carbon nanotubes (MWNT-I) and ethylene diamine (EDA) functionalized MWNTs in melt mixed blends of polycarbonate ( PC) and poly(styrene-co-acrylonitrile) (SAN) were assessed in this study using rheo-electrical and electromagnetic interference (EMI) shielding measurements. In order to improve the dispersion quality and also to selectively localize MWNTs in the PC phase of the blends, EDA was grafted onto MWNTs by two different strategies like diazonium reaction of the para-substituted benzene ring of MWNTs with EDA ( referred to as MWNT-II) and acylation of carboxyl functionalized MWNTs with thionyl chloride ( referred to as MWNT-III). By this approach we could systematically vary the concentration of NH2 functional groups on the surface of MWNTs at a fixed concentration (1 wt%) in PC/SAN blends. XPS was carried to evaluate the % concentration of N in different MWNTs and was observed to be highest for MWNT-III manifesting in a large surface coverage of EDA on the surface of MWNTs. Viscoelastic properties and melt electrical conductivities were measured to assess the dispersion quality of MWNTs using a rheo-electrical set-up both in the quiescent as well as under steady shear conditions. Rheological properties revealed chain scission of PC in the presence of MWNT-III which is due to specific interactions between EDA and PC leading to smaller PC grafts on the surface of MWNTs. The observed viscoelastic properties in the blends were further correlated with the phase morphologies under quiescent and annealed conditions. Electromagnetic interference (EMI) shielding effectiveness in X and K-u-band frequencies were measured to explore these composites for EMI shielding applications. Interestingly, MWNT-II showed the highest electrical conductivity and EMI shielding in the blends.