997 resultados para POLYMERIZATION CATALYSTS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polyethylene is the most widely used synthetic polymer in the world. Most polyethylene is made with Ziegler-Natta catalysts. Polyethylenes for special applications are made with metallocenes, which are nowadays heavily patented. It is laborious therefore, to develop new metallocenes. The aim of this work was to investigate the feasibility of replacing the cyclopentadienyl ligands of metallocenes by aminopyridinato ligands without losing the good properties of the metallocenes, such as high activity and formation of linear polymer. The subject was approached by studying what kind of catalysts the metallocenes are and how they catalyze polyethylene. The polymerization behavior of metallocenes was examined by synthesizing a piperazino substituted indenyl zirconocene catalyst and comparing its polymerization data with that of the indenyl zirconocene catalyst. On the basis of their isolobality, it was thought that aminopyridinato ligands might replace cyclopentadienyl ligands. It was presumed that the polymerization mechanism and the active center in ethylene polymerization would be similar for aminopyridinato and metallocene catalysts. Titanium aminopyridinato complexes were prepared and their structures determined to clarify the relationship between structure of the catalyst precursor and polymerization results. The ethylene polymerization results for titanium 2-phenylaminopyridinato catalysts and titanocene catalysts were compared.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Evidence for the stereochemical isomerization of a variety of ansa metallocene compounds is presented. For the scandocene allyl derivatives described here, we have established that the process is promoted by a variety of salts in both ether and hydrocarbon solvents and is not accelerated by light. A plausible mechanism based on an earlier proposal by Marks, et al., is offered as an explanation of this process. It involves coordination of anions and/or donor solvents to the metal center with cation assistance to encourage metalcyclopentadienyl bond heterolysis, rotation about the Si-Cp bond of the detached cyclopentadienide and recoordination of the opposite face. Our observations in some cases of thermodynamic racemic:meso ratios under the reaction conditions commonly used for the synthesis of the metallocene chlorides suggests that the interchange is faster than metallation, such that the composition of the reaction mixture is determined by thermodynamic, not kinetic, control in these cases.

Two new ansa-scandocene alkenyl compounds react with olefins resulting in the formation of η3-allyl complexes. Kinetics and labeling experiments indicate a tuck-in intermediate on the reaction pathway; in this intermediate the metal is bound to the carbon adjacent to the silyllinker in the rear of the metallocene wedge. In contrast, reaction of permethylscandocene alkenyl compounds with olefins results, almost exclusively, in vinylic C-H bond activation. It is proposed that relieving transition state steric interactions between the cyclopentadienyl rings and the olefin by either linking the rings together or using a larger lanthanide metal may allow for olefin coordination, stabilizing the transition state for allylic σ-bond metathesis.

A selectively isotopically labeled propylene, CH2CD(13CH3), was synthesized and its polymerization was carried out at low concentration in toluene solution using isospecific metallocene catalysts. Analysis of the NMR spectra (13C, 1H, and 2H) of the resultant polymers revealed that the production of stereoerrors through chain epimerization proceeds exclusively by the tertiaryalkyl mechanism. Additionally, enantiofacial inversion of the terminally unsaturated polymer chain occurs by a non-dissociative process. The implications of these results on the mechanism of olefin polymerization with these catalysts is discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Publications about olefin metathesis will generally discuss how the discovery and development of well-defined catalysts to carry out this unique transformation have revolutionized many fields, from natural product and materials chemistry, to green chemistry and biology. However, until recently, an entire manifestation of this methodology had been inaccessible. Except for a few select examples, metathesis catalysts favor the thermodynamic trans- or E-olefin products in cross metathesis (CM), macrocyclic ring closing metathesis (mRCM), ring opening metathesis polymerization (ROMP), and many other types of reactions. Judicious choice of substrates had allowed for the direct synthesis of cis- or Z-olefins or species that could be converted upon further reaction, however the catalyst controlled synthesis of Z-olefins was not possible until very recently.

Research into the structure and stability of metallacyclobutane intermediates has led to the proposal of models to impart Z-selectivity in metathesis reactions. Having the ability to influence the orientation of metallacyclobutane substituents to cause productive formation of Z- double bonds using steric and electronic effects was highly desired. The first successful realization of this concept was by Schrock and Hoveyda et al. who synthesized monoaryloxide pyrolidine (MAP) complexes of tungsten and molybdenum that promoted Z-selective CM. The Z-selectivity of these catalysts was attributed to the difference in the size of the two axial ligands. This size difference influences the orientation of the substituents on the forming/incipient metallacyclobutane intermediate to a cis-geometry and leads to productive formation of Z-olefins. These catalysts have shown great utility in the synthesis of complicated natural product precursors and stereoregular polymers. More recently, ruthenium catalysts capable of promoting Z-selective metathesis have been reported by our group and others. This thesis will discuss the development of ruthenium-based NHC chelated Z-selective catalysts, studies probing their unique metathesis mechanism, and synthetic applications that have been investigated thus far.

Chapter 1 will focus on studies into the stability of NHC chelated complexes and the synthesis of new and improved stable chelating architectures. Chapter 2 will discuss applications of the highly active and Z-selective developed in Chapter 1, including the formation of lepidopteran female sex pheromones using olefin cross metathesis and highly Z- and highly E-macrocycles using macrocyclic ring closing metathesis and Z-selective ethenolysis. Chapter 3 will explore studies into the unique mechanism of olefin metathesis reactions catalyzed by these NHC chelated, highly Z-selective catalysts, explaining observed trends by investigating the stability of relevant, substituted metallacyclobutane intermediates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The isotope effect on propagation rate was determined for four homogeneous ethylene polymerization systems. The catalytic system Cp_2Ti(Et)Cl + EtA1Cl_2 has a k^H_p/k^D_p = 1.035 ± 0.03. This result strongly supports an insertion mechanism which does not involve a hydrogen migration during the rate determining step of propagation (Cossee mechanism). Three metal-alkyl free systems were also studied. The catalyst I_2 (PMe_3)_3Ta(neopentylidene)(H) has a k^H_p/k^D_p = 1.709. It is interpreted as a primary isotope effect involving a non-linear a-hydrogen migration during the rate determining step of propagation (Green mechanism). The lanthanide complexes Cp*_2LuMe•Et_2O and Cp*_2YbMe•Et_2O have a k^H_p/k^D_p = 1.46 and 1.25, respectively. They are interpreted as primary isotope effects due to a partial hydrogen migration during the rate determining step of propagation.

The presence of a precoordination or other intermediate species during the polymerization of ethylene by the mentioned metal-alkyl free catalysts was sought by low temperature NMR spectroscopy. However, no evidence for such species was found. If they exist, their concentrations are very small or their lifetimes are shorter than the NMR time scale.

Two titanocene (alkenyl)chlorides (hexenyl 1 and heptenyl 2 were prepared from titanocene dichloride and a THF solution of the corresponding alkenylmagnesium chloride. They do not cyclize in solution when alone, but cyclization to their respective titanocene(methyl(cycloalkyl) chlorides occurs readily in the presence of a Lewis acid. It is demonstrated that such cyclization occurs with the alkenyl ligand within the coordination sphere of the titanium atom. Cyclization of 1 with EtAlCl_2 at 0°C occurs in less than 95 msec (ethylene insertion time), as shown by the presence of 97% cyclopentyl-capped oligomers when polymerizing ethylene with this system. Some alkyl exchange occurs (3%). Cyclization of 2 is slower under the same reaction conditions and is not complete in 95 msec as shown by the presence of both cyclohexyl-capped oligomers (35%) and odd number α-olefin oligomers (50%). Alkyl exchange is more extensive as evidenced by the even number n-alkanes (15%).

Cyclization of 2-d_1 (titanocene(hept-6-en-1-yl-1-d_1)chloride) with EtA1Cl_2 demonstrated that for this system there is no α-hydrogen participation during said process. The cyclization is believed to occur by a Cossee-type mechanism. There was no evidence for precoordination of the alkenyl double bond during the cyclization process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A series of salicylaldimine-based neutral Ni(II) complexes (3a-j) [ArN = CH(C6H40)]Ni(PPh3)Ph [3a,Ar = C6H5; 3b,Ar = C6H4F(o); 3c, Ar = C6H4F(m); 3d, Ar = C6H4F(p); 3e, Ar = C6H3F2(2,4); 3f, Ar = C6H3F2(2,5); 3g, Ar = C6H3F2(2,6); 3h, Ar = C6H3F2(3,5); 3i, Ar = C6H2F3(3,4,5); 3j, Ar = C6H5] have been synthesized in good yield, and the structures of complexes 3a and 3i have been confirmed by X-ray crystallographic analysis. Using modified methylaluminoxane as a cocatalyst, these neutral Ni(II) complexes exhibited high catalytic activities for the vinylic polymerization of norbornene.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A series of novel titanium(IV) complexes combining a phosphine oxide-bridged bisphenolato ligand TiCl2{2,2'-O=P-R-3 (4-R-2-6-R-1-C6H2O)(2)}(THF) (6a: R-1 = tBu, R-2 - H, R-3 Ph; 6b: R-1 - Ph, R-2 = H, R-3 = Ph; 6c: R-1 = R-2 = tBu, R-3 = Ph; 6d: R-1 = R-2 cumyl, R-3 = Ph; 6e: R-1 = tBu, R-2 = H, R-3 = PhF5) were prepared by the reaction of corresponding bisphenolato ligands with TiCl4 in THF. X-ray analysis reveals that complex 6a adopts distorted octahedral geometry around the titanium center. These catalysts were performed for ethylene polymerization in the presence of modified methyaluminoxane (MMAO).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vanadium(III) complexes bearing salicylaldiminato ligands (2a-k) [RN=CH(Ar0)]VCl2(THF)2 (Ar C61714, R = Ph, 2a; p-CF3Ph, 2b; p-CH3Ph, 2c; 2,6-Me2Ph, 2d; 2,6-iPr2Ph, 2e; cyclohexyl, 2f; Ar = C6H3tBu(2), R = Ph, 2g; 2,6-iPr2Ph, 2h; Ar = C6H2tBU2(2,4), R = Ph, 2i; 2,6-iPr2Ph, 2j; Ar = C6H2Br2, R = Ph, 2k) were prepared from VC13(THF)3 by treating with 1.0 equiv of (RN=CH)ArOH in tetrahydrofuran (THF) in the presence of excess triethylamine (TEA).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A series of aluminum ethyls and isopropoxides based on a bis(pyrrolidene) Schiff base ligand framework has been prepared and characterized. NMR studies of the dissolved complexes indicate that they adopt a symmetric structure with a monomeric, five-coordinated aluminum center core. The aluminum ethyls used as catalysts in the presence of 2-propanol as initiator and the aluminum isopropoxides were applied for lactide polymerization in toluene to test their activities and stereoselectivities. All polymerizations are living, as evidenced by the narrow polydispersities and the good fit between calculated and found number-average molecular weights of the isolated polymers. All of these aluminum complexes polymerized (S,S)-lactide to highly isotactic PLA without epimerization of the monomer, furnished isotactic-biased polymer from rac-lactide, and gave atactic polymer from meso-lactide.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vanadium(III) complexes bearing tridentate salicylaldiminato ligands (2a-f) [OC6H4CH=NL]VCl2(THF) (L = CH2CH2OMe, 2a; CH2CH2NMe2, 2b; CH2C5H4N, 2c; 8-C9H6N (quinoline), 2d; 2-MeSC6H4, 2e; 2-Ph2PC6H4, 2f) and tridentate beta-enaminoketonato ligands [OC6H8CH=N-2-Ph2PC6H4]VCl2(THF) (2g) and [O(Ph)C=CHCH=N-2-Ph2PC6H4]VCl2(THF) (2h) were prepared from VCl3(THF)(3) by treating with 1.0 equiv of the deprotonated ligands in tetrahydrofuran (THF). These complexes were characterized by FTIR and mass spectrometry as well as elemental analysis. Structures of complexes 2e, 2f, and 2h were further confirmed by X-ray crystallographic analysis. These complexes were investigated as catalysts for olefin polymerization in the presence of organoaluminum compounds. On activation with Et2AlCl, complexes 2a-h exhibited high catalytic activities toward ethylene polymerization (up to 20.64 kg PE/mmol(v) center dot h center dot bar) even at high temperature, suggesting these catalysts possess high thermal stability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three heteroligated (salicylaldiminato)(beta-enaminoketonato)titanium complexes [3-Bu-t-2-OC6H3CH=N(C6F5)][(p-XC6H4)N=C(Bu-t)CHC(CF3)O]TiCl2 (3a: X = F, 3b: X = Cl, 3c: X = Br) were synthesized and investigated as the catalysts for ethylene polymerization and ethylene/norbornene copolymerization. In the presence of modified methylaluminoxane as a cocatalyst, these unsymmetric catalysts exhibited high activities toward ethylene polymerization, similar to their parallel parent catalysts. Furthermore, they also displayed favorable ability to efficiently incorporate norbornene into the polymer chains and produce high molecular weight copolymers under the mild conditions, though the copolymerization of ethylene with norbornene leads to relatively lower activities. The sterically open structure of the beta-enaminoketonato ligand is responsible for the high norbornene incorporation. The norbornene concentration in the polymerization medium had a profound influence on the molecular weight distribution of the resulting copolymer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The copolymerizations of ethylene with polar hydroxyl monomers such as 10-undecen-1-ol, 5-hexen-1-ol and 3-buten-1-ol were investigated by the vanadium(III) catalysts bearing bidentate [N,O] ligands (1, [PhN=C(CH3)CHC(Ph)O]VCl2(THF)(2): 2, [PhN=CHC6H4O]VCl2(THF)(2); 3, [PhN=CHC(Ph)CHO]VCl2(THF)(2)). The polar monomers were pretreated by alkylaluminum before the polymerization. High catalytic activities and efficient comonomer incorporations can be easily obtained by changing monomer masking reagents and polymerization conditions in the presence of diethylaluminium chloride as a cocatalyst. The longer the spacer group, the higher the incorporation of the monomer. Under the mild conditions, the incorporation level of 10-undecen-1-ol reached 13.9 mol% in the resultant copolymers was obtained. The reactivity ratios of copolymerization (r(1) = 41.4, r(2) = 0.02, r(1)r(2) = 0.83) were evaluated by Fineman-Ross method. According to C-13 NMR spectra, polar units were located both on the main chain and at the chain end.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A series of novel vanadium(III) complexes bearing iminopyrrolide chelating ligands [2-(RN=CH)C4H3N]V(THF)(2)Cl-2 (2a: R = cyclohexyl; 2b: R = Ph; 2c: R = 2,6-iPr(2)C(6)H(3); 2d: R = p-CF3C6H4; 2e: R = C6F5) have been synthesized and characterized. Single-crystal X-ray diffraction revealed that complexes 2a, 2c and 2e adopt an octahedral geometry around the vanadium center. In the presence of Et2AlCl as a co-catalyst, these complexes displayed high catalytic activities up to 48.6 kg PE mmol(V)(-1) h(-1) bar(-1) for ethylene polymerization, and produced high molecular weight polymers. 2a-e/Et2AlCl catalytic systems were tolerant to elevated temperature (70 degrees C) and yielded unimodal polyethylenes, indicating the single site behaviour of these catalysts. By pre-treating with equimolar amounts of alkylaluminums, functional alpha-olefin 10-undecen-1-ol can be efficiently incorporated into polyethylene chains. 10-Undecen-1-ol incorporation can easily reach 15.8 mol% under the mild conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The oxovanadium phosphonates (VO(P-204)(2) and VO(P-507)(2)) activated by various alkylaluminums (AlR3, R = Et, i-Bu, n-Oct; HAIR(2), R = Et, i-Bu) were examined in butadiene (Bd) polymerization. Both VO(P-204)(2) and VO(P-507)(2) showed higher activity than those of classical vanadium-based catalysts (e.g. VOCl3, V(acac)(3)). Among the examined catalysts, the VO(P-204)(2)/Al(Oct)(3) system (I) revealed the highest catalytic activity, giving the poly(Bd) bearing M-n of 3.76 x 10(4) g/mol, and M-w/M-n ratio of 2.9, when the [Al]/[V] molar ratio was 4.0 at 40 degrees C. The polymerization rate for I is of the first order with respect to the concentration of monomer. High thermal stability of I was found, since a fairly good catalytic activity was achieved even at 70 degrees C (polymer yield > 33%); the M-n value and M-w/M-n, ratio were independent of polymerization temperature in the range of 40-70 degrees C. By IR and DSC, the poly(Bd)s obtained had high 1,2-unit content (> 65%) with atactic configuration. The 1,2-unit content of the polymers obtained by I was nearly unchanged, regardless of variation of reaction conditions, i.e. [Al]/[V], ageing time, and reaction temperature, indicating the high stability of stereospecificity of the active sites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A series of reactor blends of linear and branched polyethylenes have been prepared, in the presence of modified methylaluminoxane, using a combination of 2,6-bis[1(2,6-dimethyphenylimino) pyridyl]-cobalt(II) dichloride (1), known as an active catalyst for producing linear polyethylene, and [1,4-bis(2,6-diidopropylphenyl)] acenaphthene diimine nickel(II) dibromide (2), which is active for the production of branched polyethylene. The polymerizations were performed at various levels of catalyst feed ratio at 10 bar. The linear correlation between catalyst activity and concentration of catalyst 2 suggested that the catalysts performed independently from each other. The weight-average molecular weights ((M) over bar (w)), crystalline structures, and phase structures of the blends were investigated, using a combination of gel permeation chromatography, differential scanning calorimetry, wide-angle X-ray diffraction, and small angle X-ray scattering techniques. It was found that the polymerization activities and MWs and crystallization rate of the polymers took decreasing tendency with the increase of the catalyst 2 ratios, while melting temperatures (T-m), crystalline temperatures (T,), and crystalline degrees took decreasing tendency. Long period was distinctly influenced by the amorphous component concentration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two multi-nuclear titanium complexes [Ti(eta(5)-Cp-*) Cl(mu-O)](3) ( 1) and [(eta(5)-(CpTiCl)-Ti-*)(mu-O)(2)(eta(5)-(CpTi)-Ti-*)(2)(mu-O)(mu-O)(2)](2)Ti (Cp-* = C5Me5) ( 2) have been investigated as the precatalysts for syndiospecific polymerization of styrene. In the presence of modified methylaluminoxane ( MMAO) as a cocatalyst, complexes 1 and 2 display much higher catalytic activities towards styrene polymerization, and produce the higher molecular weight polystyrenes with higher syndiotacticities and melting temperatures ( T-m) than the mother complex (CpTiCl3)-Ti-* does when the polymerization temperature is above 70 degrees C and the Al/Ti molar ratio is in the low range especially.