831 resultados para POLYMERIC ELECTROLYTES
Resumo:
Ion transport in a polymer-ionic liquid (IL) soft matter composite electrolyte is discussed here in detail in the context of polymer-ionic liquid interaction and glass transition temperature The dispersion of polymethylmetacrylate (PMMA) in 1-butyl-3-methylimidazolium hexafluorophosphate (BMIPF6) and 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide (BMITFSI) resulted in transparent composite electrolytes with a jelly-like consistency The composite ionic conductivity measured over the range -30 C to 60 C was always lower than that of the neat BMITFSI/BMIPF6 and LiTFSI-BMITFSI/LiTFSI-BMIPF6 electrolytes but still very high (>1 mS/cm at 25 degrees C up to 50 wt% PMMA) While addition of LiTFSI to IL does not influence the glass T-g and T-m melting temperature significantly dispersion of PMMA (especially at higher contents) resulted in increase in T-g and disappearance of T-m In general the profile of temperature-dependent ionic conductivity could be fitted to Vogel-Tamman-Fulcher (VTF) suggesting a solvent assisted ion transport However for higher PMMA concentration sharp demarcation of temperature regimes between thermally activated and solvent assisted ion transport were observed with the glass transition temperature acting as the reference point for transformation from one form of transport mechanism to the other Because of the beneficial physico-chemical properties and interesting ion transport mechanism we envisage the present soft matter electrolytes to be promising for application in electrochromic devices (C) 2010 Elsevier Ltd All rights reserved
Resumo:
Solid acid polymer electrolytes (SAPE) were synthesised using polyvinyl alcohol, potassium iodide and sulphuric acid in different molar ratios by solution cast technique. The temperature dependent nature of electrical conductivity and the impedance of the polymer electrolytes were determined along with the associated activation energy. The electrical conductivity at room temperature was found to be strongly depended on the amorphous nature of the polymers and H2SO4 concentration. The ac (100 Hz to 10 MHz) and dc conductivities of the polymer electrolytes with different H2SO4 concentrations were analyzed. A maximum dc conductivity of 1.05 x 10(-3) S cm(-1) has been achieved at ambient temperature for electrolytes containing 5 M H2SO4. The frequency and temperature dependent dielectric and electrical modulus properties of the SAPE were studied. The charge transport in the present polymer electrolyte was obtained using Wagner's polarization technique, which demonstrated the charge transport to be mainly due to ions. Using these solid acid polymer electrolytes novel Zn/SAPE/MnO2 solid state batteries were fabricated and their discharge capacity was calculated. An open circuit voltage of 1.758V was obtained for 5 M H2SO4 based Zn/SAPE/MnO2 battery. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
A model incorporating the surface conductivity and morphology of the composite solid electrolytes is envisaged to explain their conduction behaviour. The conductivity data on LinX−50 m/o Al2O3 (X = F−, Cl−, Br−, CO32−, SO42−, PO43−) composites prepared by thermal decomposition of LinX·2nAl(OH)3·mH2O salts and Li2SO4−A (A=Al2O3, CeO2, Y2O3, Yb2O3, Zr2O3, ZrO2 and BaTiO3) composites prepared by mechanical mixing of the components are examined in the light of this model. It is surmised that the particle size of both the dispersoids and the hosts not only influence the ionic conductivity of the host matrix but also affect its bulk properties.
Resumo:
Reaction of Cu2(O2CMe)4(H2O)2 with 1,2-diaminoethane(en) in ethanol, followed by the addition of NH4PF6, led to the formation of a covalently linked 1D polymeric copper(II) title complex showing alternating [Cu2(en)2(OH)22+] and [Cu2(O2CMe)4] units in the chain and the shortest Cucdots, three dots, centeredCu separation of 2.558(2) Å in the tetraacetato core.
Resumo:
Polyphosphate esters have been used as polymeric flame retardant plasticizers in poly(vinyl chloride); thermal and flammability studies were carried out to evaluate their efficiencies as fire retardants. A comparison is also made on the fire retardancy of the conventional simple phosphates with that of the polyphosphates as novel fire retardant plasticizers for PVC.
Resumo:
The thermodynamic properties of K2CO3 -KSO, solid solutions with hexagonal structure have been measured using a solid-state cell, incorporating a composite solid electrolyte with step-changes in composition. The cell with the configuration Pt, CO2' + O2' || K2CO3 | K2(CO3)x(SO4)1-x || CO2'' + O2'' + Pt X =1 X=X was investigated in the temperature range of 925 to 1165 K. The composite gradient solid electrolyte consisted of pure K2CO3 at one extremity and the solid solution under study at the other. The Nernstian response of the cell to changes in partial pressures of CO2 and O2 at the electrodes and temperature was demonstrated. The activity of K2CO3 in the solid solution was measured by three techniques. All three methods gave identical results, indicating unit transport number for K+ ions and negligible diffusion potential due to concentration gradients of carbonate and sulfate ions. The activity of K2CO3 exhibits positive deviation from Raoult's law. The excess Gibbs energy of mixing of the solid solution can be represented using a subregular solution model DELTAG(E) = X(1 - X)[5030X + 4715(1 - X)] J mol-1 By combining this information with the phase diagram, mixing properties of the liquid phase were obtained.
Resumo:
Important issues of water and thermal history affecting ion transport in a representative plastic crystalline lithium salt electrolyte: succinonitrile (SN)-lithium perchlorate (LiClO4) are discussed here. Ionic conductivity of electrolytes with high lithium salt amounts (similar to 1 M) in SN at a particular temperature is known to be influenced both by the trans-gauche isomerism and ion association (solvation), the two most important intrinsic parameters of the plastic solvent. In the present study both water and thermal history influence SN and result in enhancement of ionic conductivity of 1 M LiClO4-SN electrolyte. Systematic observations reveal that the presence of water in varying amounts promote ion-pair dissociation in the electrolyte. While trace amounts (approximate to 1-15 ppm) do not affect the trans-gauche isomerism of SN, the presence of water in large amounts (approximate to 5500 ppm) submerges the plasticity of SN. Subjugating the electrolyte to different thermal protocol resulted in enhancement of trans concentration only. This is an interesting observation as it demonstrates a simple and effective procedure involving utilization of an optimized set of external parameters to decouple solvation from trans-gauche isomerism. Observations from the ionic conductivity of various samples were accounted by changes in signature isomer and ion-association bands in the mid-IR regime and also from plastic to normal crystal transition temperature peak obtained from thermal studies. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Influence of succinonitrile (SN) dynamics on ion transport in SN-lithium perchlorate (LiClO4) electrolytes is discussed here via dielectric relaxation spectroscopy. Dielectric relaxation spectroscopy (similar to 2 x 10(-3) Hz to 3 MHz) of SN and SN-LiClO4 was studied as a function of salt content (up to 7 mol % or 1 M) and temperature (-20 to +60 degrees C). Analyses of real and imaginary parts of permittivity convincingly reveal the influence Of trans gauche isomerism and solvent-salt association (solvation) effects on ion transport. The relaxation processes are highly dependent on the salt concentration and temperature. While pristine SN display only intrinsic dynamics (i.e., trans-gauche isomerism) which enhances with an increase in temperature, SN-LiClO4 electrolytes especially at high salt concentrations (similar to 0.04-1 M) show salt-induced relaxation processes. In the concentrated electrolytes, the intrinsic dynamics was observed to be a function of salt content, becoming faster with an increase in salt concentration. Deconvolution of the imaginary part of the permittivity spectra using Havriliak-Negami (HN) function show a relaxation process corresponding to the above phenomena. The permittivity data analyzed using HN and Kohlrausch-Williams-Watta (KWW) functions show non-Debye relaxation processes and enhancement in the trans phase (enhanced solvent dynamics) as a function of salt concentration and temperature.
Resumo:
The thermodynamic properties of Na2CO3-Na2SO4 solid solution with hexagonal structure have been measured in the temperature range of 873 to 1073 K, using a composite-gradient solid electrolyte. The cell used can be represented as The composite-gradient solid electrolyte consisted of pure Na2CO3 at one extremity and the solid solution under study at the other, with variation in composition across the electrolyte. A CO2 + O2 + Ar gas mixture was used to fix the chemical potential of sodium at each electrode. The Nernstian response of the cell to changes in partial pressures of CO2 and O2 at the electrodes has been demonstrated. The activity of Na2CO3 in the solid solution was measured by two techniques. In the first method, the electromotive force (emf) of the cell was measured with the same CO2 + O2 + Ar mixture at both electrodes. The resultant emf is directly related to the activity of Na2CO3 at the solid solution electrode. By the second approach, the activity was calculated from the difference in compositions Of CO2 + O2 + Ar mixtures at the two electrodes required to produce a null emf. Both methods gave identical results. The second method is more suitable for gradient solid electrolytes that exhibit significant electronic conduction. The activity of Na2CO3 exhibits positive deviation from Raoult's law. The excess Gibbs' energy of mixing of the solid solution can be represented using a subregular solution model such as the following: DELTAG(E) = X(1 - X)[6500(+/-200)X + 3320(+/-80)(1 - X)J mol-1 where X is the mole fraction of Na2CO3. By combining this information with the phase diagram, mixing properties of the liquid phase are obtained.
Resumo:
Influence of dispersion of uniformly sized mono-functional and bi-functional (''Janus'') particles on ionic conductivity of novel ``soggy sand'' electrolytes and its implications on mechanical strength and lithium-ion battery performance are discussed here.
Resumo:
A novel (main chain)-(side chain) vinyl polyperoxide, poly(alpha-(tert-butylperoxymethyl)styrene peroxide) (MCSCPP), an alternating copolymer of alpha-(tert-butylperoxymethyl)styrene (TPMS) and oxygen, has been synthesized by the oxidative polymerization of TPMS. The MCSCPP was characterized by H-1 NMR, C-13 NMR, IR, DSC, EI-MS, and GC-MS studies. The overall activation energy (E(a)) for the degradation of MCSCPP was found to be 27 kcal/mol. Formaldehyde and alpha-(tert-butylperoxy)acetophenone (TPAP) were identified as the primary degradation products of MCSCPP; TPAP was found to undergo further degradation. The side chain peroxy groups were found to be thermally more stable than those in the main chain. Polymerization of styrene in the presence of MCSCPP as initiator, at 80 degrees C, follows classical kinetics. The presence of peroxy segments in the polystyrene chain was confirmed by both H-1 NMR and thermal decomposition studies. Interestingly, unlike other vinyl polyperoxides, the MCSCPP initiator shows an increase in molecular weight with conversion.
Resumo:
Polymeric compositions containing Al-Mg alloys show higher reactivities, in comparison with similar compositions containing aluminium. This is observed irrespective of the amount of oxidizer, type of oxidizer used, type of polymeric binder, and over a range of the particle sizes of the metal additive. This is evident from the higher calorimetric values obtained for compositions containing the alloy, in comparison to samples containing aluminium. Analysis of the combustion residue shows the increase in calorimetric value to be due to the greater extent of oxidation of the alloy. The interaction between the polymeric binder and the alloy was studied by coating the metal particles with the polymer by a coacervation technique. On ageing in the presence of ammonium perchlorate, cracking of the polymer coating on the alloy was noticed. This was deduced from differential thermal analysis experiments, and confirmed by scanning electron microscopic observations. The increase in stiffness of the coating, leading to cracking, has been traced to the cross-linking of the polymer by magnesium.
Resumo:
The design of a solid electrolyte that permits the use of dissimilar gas electrodes in an electrochemical cell is presented. It consists of a functionally gradient material with spatial variation in composition. The activity of the conducting ion is fixed at each electrode using different gas species. The system chosen for demonstrating the concept consists of a solid solution between K2CO3 and K2SO4. The composition of the solid solution varies from pure K2CO3 in contact with a CO2 + O2 gas mixture at one electrode to pure K2SO4 exposed to a mixture of SO3 + SO2 + O2 at the other. Two types of composition profiles are studied, one with monotonic variation in composition and the other with extrema. The e.m.f. of the cells is studied as a function of temperature and composition of the gas mixture at each electrode. The results indicate that the e.m.f. is determined primarily by the difference in the chemical potential of potassium at the two electrodes. The diffusion potential caused by ionic concentration gradients in the electrolyte appears to be negligible when the corresponding ionic transport numbers are insignificant. Studies on the response characteristics of the cell based on the gradient electrolyte indicate that the nature of the variation in composition of the electrolyte has only a minor effect on the time evolution of e.m.f. The gradient solid electrolytes have potential application in multielement galvanic sensors at high temperatures.
Resumo:
A new polymer electrolyte (PEG)(x) NH4ClO4(x = 5, 10, 15, 20) has been prepared that shows protonic conduction. The room temperature conductivities are of the order of 10(-7) S/cm, and increase with decrease in salt concentration. NMR line width studies indicate fairly low glass transition temperatures of the polymer salt complexes.
Resumo:
Solid oxide-ion electrolytes find application in oxygen sensors, oxygen pumps and in high-temperature electrolyser-fuel-cell hybrid systems. All the solid electrolytes known so Qr, however, exhibit: tow oxide-ion conductivities below 973 K. Therefore, there is a need for fast oxide-ion conductors operative at temperatures around 673 K, Recently, efforts have been directed towards developing such materials. This article summarizes various type of oxide-ton electrolytes reported in literature and outlines a strategy for the identificatiom/synthesis of improved materials.