844 resultados para POLY(N-ISOPROPYLACRYLAMIDE) HYDROGELS
Resumo:
The bulk free radical copolymerizations of 2-hydroxyethyl methacrylate (HEMA) with n-butyl methacrylate (BMA) or cyclohexyl methacrylate (CHMA) were studied over the composition mole fraction interval of 0-1 for HEMA in the monomer feed. The C-13 NMR (125 MHz) spectra of the copolymers were analysed to determine the copolymer composition and the stereochemical configuration of the copolymers. The terminal model reactivity ratios of HEMA and BMA were found to be r(HEMA) = 1.73 and r(BMA) = 0.65 and for HEMA and CHMA, r(HEMA) = 1.26 and r(CHMA) = 0.31. The BMA and CHMA homopolymers were found to be predominantly syndiotactic with isotacticity parameters of theta(BB) = 0.18 and theta(CC) = 0.19, respectively. The copolymers were also found to be predominantly syndiotactic, indicating a strong tendency for racemic additions of the monomers in the formation of the copolymers. The diffusion of water into cylinders of poly(HEMA-co-BMA) and poly(HEMA-co-CHMA) was studied over a range of copolymer compositions and was found to be Fickian. The diffusion coefficients of water at 37 degrees C were determined from swelling measurements and were found to vary from 1.72 x 10(-11) m(2) s(-1) for polyHEMA to 0.97 x 10(-11) m(2) s(-1) for poly(HEMA-co-BMA) having a mole fraction F-HEMA = 0.80 and to 0.91 x 10(-11) m(2) s(-1) for a poly(HEMA-co-CHMA) also having F-HEMA = 0.80. The mass of water absorbed at equilibrium relative to the mass of dry polymer varied from 58.8 for polyHEMA to 27.2% for poly(HEMA-co-BMA) having F-HEMA = 0.85 and to 21.3% for poly(HEMA-co-CHMA) having F-HEMA = 0.80. (C) 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
Semi-interpenetrating networks (Semi-IPNs) with different compositions were prepared from poly(dimethylsiloxane) (PDMS), tetraethylorthosilicate (TEOS), and poly (vinyl alcohol) (PVA) by the sol-gel process in this study. The characterization of the PDMS/PVA semi-IPN was carried out using Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and swelling measurements. The presence of PVA domains dispersed in the PDMS network disrupted the network and allowed PDMS to crystallize, as observed by the crystallization and melting peaks in the DSC analyses. Because of the presence of hydrophilic (-OH) and hydrophobic (Si-(CH(3))(2)) domains, there was an appropriate hydrophylic/hydrophobic balance in the semi-IPNs prepared, which led to a maximum equilibrium water content of similar to 14 wt % without a loss in the ability to swell less polar solvents. (C) 2009 Wiley Periodicals, Inc. J Appl Polym Sci 115: 158-166, 2010
The states, diffusion, and concentration distribution of water in radiation-formed PVA/PVP hydrogels
Resumo:
Hydrogels with various compositions of polyvinyl alcohol (PVA) and poly(1-vinyl-2-pyrrolidinone) (PVP) were prepared by irradiating mixtures of PVA and PVP in aqueous solutions with gamma-rays from Co-60 sources at room temperature. The states of water in the hydrogels were characterized using DSC and NMR T-2 relaxation measurements and the kinetics of water diffusion in the hydrogels were studied by sorption experiments and NMR imaging. The DSC endothermic peaks in the temperature range -10 to +10 degrees C implied that there are at least two kinds of freezable water present in the matrix. The difference between the total water content and the freezable water content was refer-red to as bound water, which is not freezable. The weight fraction of water at which only nonfreezable water is present in a hydrogel with F-VP = 0.19 has been estimated to be g(H2O)/g(Polymer) = 0.375. From water sorption experiments, it was demonstrated that the early stage of the diffusion of water into the hydrogels was Fickian. A curve-fit of the early-stage experimental data to the Fickian model allowed determination of the water diffusion coefficient, which was found to lie between 1.5 x 10(-11) m(2) s(-1) and 4.5 x 10(-11) m(2) s(-1), depending on the polymer composition, the cross-link density, and the temperature. It was also found that the energy barrier for diffusion of water molecules into PVA/PVP hydrogels was approximate to 24 kJ mol(-1). Additionally, the diffusion coefficients determined from NMR imaging of the volumetric swelling of the gels agreed well with the results obtained by the mass sorption method.
Resumo:
The diffusion of water into a series of hydroxyethyl methacrylate, HEMA, copolymers with tetrahydrofurfuryl methacrylate, THFMA, has been studied over a range of copolymer compositions using NMR imaging analyses. For polyHEMA the diffusion was found to be consistent with a Fickian model. The mass diffusion coefficient of water in polyHEMA at 37 degreesC was determined from the profiles of the diffusion front to be 1.5 x 10(-11) m(2) s(-1), which is less than the value based upon mass uptake, 2.0 x 10(-11) m(2) s(-1). The profiles of the water diffusion front obtained from the NMR images showed that stress was induced at the interface between the rubbery and glassy regions which led to formation of small cracks in this region of the glassy matrix of polyHEMA and its copolymers with mole fractions of HEMA greater than 0.6. Water was shown to be able to enter these cracks forming water pools. For copolymers of HEMA and THFMA with mole fractions of HEMA less than 0.6 the absence of cracks was attributed to the ability of the THFMA sequences to undergo stress relaxation by creep.
Resumo:
The formation of radicals in poly(vinyl alcohol), PVA, powder irradiated at 77 K by gamma -rays and the transformations of these radicals during photolysis with visible wavelengths and on thermal annealing have been studied. After irradiation a four-line ESR spectrum was observed. It was assigned to a triplet of the C-alpha-radical (38%), with a splitting of 3.27 mT, superimposed on a doublet (62%) with a splitting of 2.7 mT. The doublet appears to be composed of two radicals, one of which is photo-bleachable (58%) and the other which is not photo-bleachable (42%). This suggests that the latter radical is a neutral radical. The photo-bleachable component of the doublet has been assigned to a carbonyl anion radical. but the second doublet due to a neutral radical is unassigned. The total G-value for formation of radicals at 77 K was found to be 2.41 +/- 0.03. Upon illumination with visible light, the anion radicals were removed and the doublet components or the spectrum diminished in intensity, while the three-line spectrum of the C-alpha-radical became more clearly visible. This transition was due to the photo-detachment of electrons from traps which were proposed to be located on carbonyl groups in the polymer resulting from incomplete hydrolysis of the vinyl acetate. The photo-decay of the anion radicals could be satisfactorily described by a two-stage process. The first stage comprised the decay of approximately 80% of the anion radicals present, while the second stage was associated with the decay of the remaining 20%. Subsequent thermal annealing of a photolysed sample to 290 K led to a change in the shape of the spectrum to form a more clearly defined triplet, As the doublet of the neutral radical decays on thermal annealing between 150 and 250K, the C-alpha-radical is formed. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Poly(2-hydroxyethyl methacrylate) and copolymers of 2-hydroxyethyl methacrylate (HEMA) and 1-vinyl-2-pyrrolidone (VP) in the form of cylindrical samples (approximate to8mm x 20mm) have been prepared and the sorption of water into these cylinders has been studied by the mass-uptake methods and by magnetic-resonance imaging. The equilibrium water contents for the cylinders were found to vary systematically with the copolymer composition. Diffusion of water into the cylinders was found to follow Fickian behaviour for cylinders with high HEMA contents, with the diffusion coefficients obtained from mass-uptake studies dependent on the copolymer composition, varying from 1.7 x 10(-11) m(2) s(-1) for poly(HEMA) to 2.0 x 10(-11) m(2) s(-1) for poly(HEMA-co-VP) with a composition of 1:1. However, NMR-imaging studies showed that, while the profiles of the water diffusion fronts for cylinders with high HEMA contents were Fickian, that for the 1:1 copolymer was not and indicated that the mechanism was Case III. The polymers which were rich in VP were characterized by a water-sorption process which follows Case-III behaviour. (C) 2003 Society of Chemical Industry.
Resumo:
Thesis submitted to Faculdade de Ciências e Tecnologia from Universidade Nova de Lisboa in partial fulfillment of the requirements for the obtention of the degree of Master of Science in Biotechnology
Resumo:
Photopolymerization is commonly used in a broad range of bioapplications, such as drug delivery, tissue engineering, and surgical implants, where liquid materials are injected and then hardened by means of illumination to create a solid polymer network. However, photopolymerization using a probe, e.g., needle guiding both the liquid and the curing illumination, has not been thoroughly investigated. We present a Monte Carlo model that takes into account the dynamic absorption and scattering parameters as well as solid-liquid boundaries of the photopolymer to yield the shape and volume of minimally invasively injected, photopolymerized hydrogels. In the first part of the article, our model is validated using a set of well-known poly(ethylene glycol) dimethacrylate hydrogels showing an excellent agreement between simulated and experimental volume-growth-rates. In the second part, in situ experimental results and simulations for photopolymerization in tissue cavities are presented. It was found that a cavity with a volume of 152 mm3 can be photopolymerized from the output of a 0.28-mm2 fiber by adding scattering lipid particles while only a volume of 38 mm3 (25%) was achieved without particles. The proposed model provides a simple and robust method to solve complex photopolymerization problems, where the dimension of the light source is much smaller than the volume of the photopolymerizable hydrogel.
Resumo:
Afin d'étudier la diffusion et la libération de molécules de tailles inférieures dans un gel polymère, les coefficients d'auto-diffusion d'une série de polymères en étoile avec un noyau d'acide cholique et quatre branches de poly(éthylène glycol) (PEG) ont été déterminés par spectroscopie RMN à gradient de champ pulsé dans des solutions aqueuses et des gels de poly(alcool vinylique). Les coefficients de diffusion obtenus ont été comparés avec ceux des PEGs linéaires et dendritiques pour étudier l'effet de l'architecture des polymères. Les polymères en étoile amphiphiles ont des profils de diffusion en fonction de la concentration similaires à leurs homologues linéaires dans le régime dilué. Ils diffusent plus lentement dans le régime semi-dilué en raison de leur noyau hydrophobe. Leurs conformations en solution ont été étudiées par des mesures de temps de relaxation spin-réseau T1 du noyau et des branches. L'imagerie RMN a été utilisée pour étudier le gonflement des comprimés polymères et la diffusion dans la matrice polymère. Les comprimés étaient constitués d'amidon à haute teneur en amylose et chargés avec de l'acétaminophène (de 10 à 40% en poids). Le gonflement des comprimés, ainsi que l'absorption et la diffusion de l'eau, augmentent avec la teneur en médicament, tandis que le pourcentage de libération du médicament est similaire pour tous les comprimés. Le gonflement in vitro des comprimés d'un complexe polyélectrolyte à base d'amidon carboxyméthylé et de chitosane a également été étudié par imagerie RMN. Ces comprimés sont sensibles au pH : ils gonflent beaucoup plus dans les milieux acides que dans les milieux neutres en raison de la dissociation des deux composants et de la protonation des chaînes du chitosane. La comparaison des résultats avec ceux d'amidon à haute teneur en amylose indique que les deux matrices ont des gonflements et des profils de libération du médicament semblables dans les milieux neutres, alors que les comprimés complexes gonflent plus dans les milieux acides en raison de la dissociation du chitosane et de l'amidon.
Resumo:
Free-radical copolymerization of 2-hydroxyethyl methacrylate with 2-hydroxyethyl acrylate can be successively utilized for the synthesis of water-soluble polymers and hydrogels with excellent physicochemical properties, thus showing promise for pharmaceutical and biomedical applications. In the work presented it has been demonstrated that water-soluble copolymers based on 2-hydroxyethyl methacrylate and 2-hydroxyethyl acrylate exhibit lower critical solution temperature in aqueous solutions, whereas the corresponding high molecular weight homopolymers do not have this unique property. The temperature-induced transitions observed upon heating the aqueous solutions of these copolymers proceed via liquid−liquid phase separation. The hydrogels were also synthesized by copolymerizing 2-hydroxyethyl methacrylate and 2-hydroxyethyl acrylate in the absence of a bifunctional cross-linker. The cross-linking of these copolymers during copolymerization is believed to be due to the presence of bifunctional admixtures or transesterification reactions. Transparency, swelling behavior, mechanical properties, and porosity of the hydrogels are dependent upon the monomer ratio in the copolymers. Hydrogel samples containing more 2-hydroxyethyl methacrylate are less transparent, have lower swelling capacity, higher elastic moduli, and pores of smaller size. The assessment of the biocompatibility of the copolymers using the slug mucosal irritation test revealed that they are also less irritant than poly(acrylic acid).
Resumo:
The coating of cotton fiber is used in the textile industry to increase the mechanical resistance of the yarn and their resistance to vibration, friction, impact, and elongation, which are some of the forces to which the yarn is subjected during the weaving process. The main objective of this study was to investigate the use of synthetic hydrophilic polymers, poly(vinyl alcohol) (PVA), and poly(N-vinyl-2-pyrrolidone) (PVP) to coat 100% cotton textile fiber, with the aim of giving the fiber temporary mechanical resistance. For the fixation of the polymer on the fiber, UV-C radiation was used as the crosslinking process. The influence of the crosslinking process was determined through tensile testing of the coated fibers. The results indicated that UV-C radiation increased the mechanical resistance of the yarn coated with PVP by up to 44% and the yarn coated with PVA by up to 67% compared with the pure cotton yarn, that is, without polymeric coating and crosslinking. This study is of great relevance, and it is important to consider that UV-C radiation dispenses with the use of chemical substances and prevents the generation of toxic waste at the end of the process. (C) 2010 Wiley Periodicals, Inc. J Appl Polym Sci 119: 2560-2567, 2011
Resumo:
Coating of cotton yarn is employed in the textile industry to increase the mechanical resistance of the yarns and resistance to vibration, friction, impact, and elongation, which are some of the forces to which the yarn is subjected during the weaving process. The main objective of this study is to investigate the usage of a synthetic hydrophilic polymer, poly(N-vinyl-2-pyrrolidone) (PVP), to coat 100% cotton textile yarn, aiming to give the yarn a temporary mechanical resistance. For the improvement of the mechanical resistance of the yarn, the following crosslinking processes of PVP were investigated: UV-C (ultraviolet) radiation, the Fenton and photo-Fenton reactions, and sensitized UV-C radiation. The influence of each crosslinking process was determined through tensile testing of the coated yarns. The results indicated that the best crosslinking process employed was UV-C radiation; increasing the mechanical resistance of the yarn up to 44% if compared with the pure cotton yarn, that is, without polymeric coating and crosslinking. POLYM. ENG. SCI., 51:445-453, 2011. (C) 2010 Society of Plastics Engineers
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper describes the use of Au nanoparticle (NP)-containing hydrogel microstructures in the development of electrochemical enzyme-based biosensors. To fabricate biosensors, AuNPs were conjugated with glucose oxidase (GOX) or horseradish peroxidase (HRP) molecules and were dispersed in the prepolymer solution of poly(ethylene glycol) diacrylate (PEG-DA). Vinylferrocene (VF) was also added into the prepolymer solution in order to lower operating potential of the biosensor and to prevent oxidation of interfering substances. The prepolymer solution was photolithographically patterned in alignment with an array of Au electrodes fabricated on glass. As a result, electrode arrays became functionalized with AuNP/GOX- or AuNP/HRP-carrying hydrogel microstructures. Performance of the biosensors was characterized by impedance spectroscopy, chronoapmerometry and cyclic voltammetry. Impedance measurements revealed that inclusion of Au nanoparticles improved conductivity of PEG hydrogel by a factor of 5. Importantly, biosensors based on AuNP-GOX complex exhibited high sensitivity to glucose (100μAmM -1cm -2) in the linear range from 0.1 to 10mM. The detection limit was estimated to be 3.7×10- 7M at a signal-to-noise ratio of 3. Biosensors with immobilized AuNP/HPR had a linear response from 0.5 to 5.0μM of hydrogen peroxide with sensitivity of 1.4mAmM -1cm -2. The method for fabricating nanoparticle-carrying hydrogel microstructures described in this paper should be widely applicable in the development of robust and sensitive electrochemical biosensors. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
This article studied the applicability of poly(acrylamide) and methylcellulose (PAAm-MC) hydrogels as potential delivery vehicle for the controlled-extended release of ammonium sulfate (NH(4))(2)SO(4) and potassium phosphate (KH(2)PO(4)) fertilizers. PAAm-MC hydrogels with different acrylamide (AAm) and MC concentrations were prepared by a free radical polymerization method. The adsorption and desorption kinetics of fertilizers were determined using conductivity measurements based on previously built analytical curve. The addition of MC in the PAAm chains increased the quantities of (NH(4))(2)SO(4) and KH(2)PO(4) loaded and extended the time and quantities of fertilizers released. Coherently, both loading and releasing processes were strongly influenced by hydrophilic properties of hydrogels (AAm/MC mass proportion). The best sorption (124.0 mg KH(2)PO(4)/g hydrogel and 58.0 mg (NH(4))(2)SO(4)/g hydrogel) and desorption (54.9 mg KH(2)PO(4)/g hydrogel and 49.5 mg (NH(4))(2)SO(4)/g hydrogel) properties were observed for 6.0% AAm-1.0% MC hydrogels (AAm/MC mass proportion equal 6), indicating that these hydrogels are potentially viable to be used in controlled-extended release of fertilizers systems. (C) 2011 Wiley Periodicals, Inc. J Appl Polym Sci 123: 2291-2298, 2012