980 resultados para PM3 calculations
Resumo:
Boiling two-phase flow and the equations governing the motion of fluid in two-phase flows are discussed in this thesis. Disposition of the governing equations in three-dimensional complex geometries is considered from the perspective of the porous medium concept. The equations governing motion in two-phase flows were formulated, discretized and implemented in a subroutine for pressure-velocity solution utilizing the SIMPLE algorithm modified for two-phase flow. The subroutine was included in PORFLO, which is a three-dimensional 5-equation porous media model developed at VTT by Jaakko Miettinen. The development of two-phase flow and the resulting void fraction distribution was predicted in a geometry resembling a section of BWR fuel bundle in a couple of test cases using PORFLO.
Resumo:
The results of semiempirical molecular orbital calculations performed on aziridinone and diaziridinone employing the MNDO, AM1, and PM3 molecular models are presented. The AM1 method, which best reproduces ground-state molecular properties, is used to calculate electronic parameters and the use of these parameters for the evaluation of reactivity is discussed.
Resumo:
The NMR conformational study of 4',7-di-hydroxy-8-prenylflavan 1 was carried out in acetone-d6, DMSO-d6 and CDCl3 which enabled the proposition of three conformations, namely 1a, 1b and 1c, differing in the position of the prenyl group. Geometry optimizations performed using AM1 method showed that 1a (deltaHf = -86.2 kcal/mol) is as stable as 1b (deltaHf = -85.1 kcal/mol) and 1c (deltaHf = -85.4 kcal/mol). When the solvent was included, the calculations showed that the solute-solvent interactions could be explained either in the light of the electronic intermolecular delocalization or the electrostatic character between solute and solvent. Theoretical calculations (HF/6-31G*, deltaFT/BLYP/6-31G*, and deltaFT/B3LYP/6-31G*) showed that the combination of these types of interactions present in each solute-solvent system, dependent on the chemical properties of the solvent, lead to different spatial arrangements of the prenyl group, which in turn determined the conformation of 1.
Resumo:
The purpose of this work is to study theoretically stereoelectronic aspects of the interaction between heme and artemisinin in the transitional heme-artemisinin complex. Through semi-empirical calculations using the PM3 method, the potential energy barrier of artemisinin rotation relative to heme in the heme-artemisinin complex was studied in vacuum and in the partially solvated state. The minimum heat of formation obtained for the complex with and without water molecules is -702.39 and -100.86 kcal mol-1, respectively, which corresponds to the dihedral angle C-Fe-O1-O2 of 43.93º and 51.90º around the iron-oxygen O1 bond, respectively. The water molecules bind to heme via 13 hydrogen bonds and O-HO and 6 C-HO interactions, which accounts for -67.23 kcal mol-1. It is observed that the inclusion of water molecules does not affect significantly the stability of the heme-artemisinin complex.
Resumo:
This study represents an integrated approach towards understanding the electronic and structural aspects of 2-benzylamino-1,4-naphthalenedione, a representative 2-amino-napfthoquinone. To this end, theoretical calculations performed at the B3PW91/6-31+G(d) level of density functional theory, electrochemical and X-ray structural investigation were employed. Two intramolecular H-bonds and other two intermolecular H-bonds were observed, including non-classical interactions. Cyclic voltammogram (CV) and differential pulse voltammetry (DPV) show two pairs of peaks, being each one a monoelectronic process.
Resumo:
Genetic algorithm and partial least square (GA-PLS) and kernel PLS (GA-KPLS) techniques were used to investigate the correlation between retention indices (RI) and descriptors for 117 diverse compounds in essential oils from 5 Pimpinella species gathered from central Turkey which were obtained by gas chromatography and gas chromatography-mass spectrometry. The square correlation coefficient leave-group-out cross validation (LGO-CV) (Q²) between experimental and predicted RI for training set by GA-PLS and GA-KPLS was 0.940 and 0.963, respectively. This indicates that GA-KPLS can be used as an alternative modeling tool for quantitative structure-retention relationship (QSRR) studies.
Resumo:
E-Lychnophoric acid 1, its derivative ester 2 and alcohol 3 killed 100% of trypomastigote blood forms of Trypanosoma cruzi at the concentrations of 13.86, 5.68, and 6.48 µg/mL, respectively. Conformational distribution calculations (AM1) of 1, 2 and 3 gave minimum energies for the conformers a, b, c, and d, which differ from each other only in the cyclononene ring geometry. Calculations (DFT/BLYP/6-31G*) of geometry optimization and chemical properties were performed for conformers of 1, 2, and 3. The theoretical results were numerically compared to the trypanocidal activity. Calculated values of atomic charge, orbital population, and vibrational frequencies showed that the C-4-C-5 pi-endocyclic bond does not affect the trypanocidal activity of the studied compounds. Nevertheless, the structure of the group at C-4 strongly influences the activity. However, the theoretical results indicated that the intra-ring (C-1 and C-9) and pi-exocycle (C-8 and C-14) carbons of caryophyllene-type structures promote the trypanocidal activity of these compounds.
Resumo:
Molecular modelling using semiempirical methods AM1, PM3, PM5 and, MINDO as well as the Density Functional Theory method BLYP/DZVP respectively were used to calculate the structure and vibrational spectra of d-glucose and d-fructose in their open chain, alpha-anomer and beta-anomer monohydrate forms. The calculated data show that both molecules are not linear; ground state and the number for the point-group C is equal to 1. Generally, the results indicate that there are similarities in bond lengths and vibrational modes of both molecules. It is concluded that DFT could be used to study both the structural and vibrational spectra of glucose and fructose.
Resumo:
The main aim of this research was to develop cost of poor quality calculation model which will better reflect business impacts of lost productivity caused by IT incidents for the case company. This objective was pursued by reviewing literature and conducting a study in a Finnish multinational manufacturing company. Broad analysis of the scientific literature allowed to identify main theories and models of Cost of Poor Quality and provided better base for development of measurements of business impacts of lost productivity. Empirical data was gathered with semi-structured interviews and internet based survey. In total, twelve interviews with experts and 39 survey results from business stakeholders were gathered. Main results of empirical study helped to develop the measurement model of cost of poor quality and it was tied to incident priority matrix. Nevertheless, the model was created based on available data. Main conclusions of the thesis were that cost of poor quality measurements could be even further improved if additional data points could be used. New model takes into consideration different cost regions and utilizes on this notion.
Resumo:
Several irrigation treatments were evaluated on Sovereign Coronation table grapes at two sites over a 3-year period in the cool humid Niagara Peninsula of Ontario. Trials were conducted in the Hippie (Beamsville, ON) and the Lambert Vineyards (Niagara-on-the-Lake, ON) in 2003 to 2005 with the objective of assessing the usefulness of the modified Penman-Monteith equation to accurately schedule vine irrigation needs. Data (relative humidity, windspeed, solar radiation, and temperature) required to precisely calculate evapotranspiration (ETq) were downloaded from the Ontario Weather Network. One of two ETq values (either 100 or 150%) were used in combination with one of two crop coefficients (Kc; either fixed at 0.75 or 0.2 to 0.8 based upon increasing canopy volume) to calculate the amount of irrigation water required. Five irrigation treatments were: un irrigated control; (lOOET) X Kc =0.75; 150ET X Kc =0.75; lOOET X Kc =0.2-0.8; 150ET X Kc =0.2-0.8. Transpiration, water potential (v|/), and soil moisture data were collected each growing seasons. Yield component data was collected and berries from each treatment were analyzed for soluble solids (Brix), pH, titratable acidity (TA), anthocyanins, methyl anthranilate (MA), and total volatile esters (TVE). Irrigation showed a substantial positive effect on transpiration rate and soil moisture; the control treatment showed consistently lower transpiration and soil moisture over the 3 seasons. Transpiration appeared accurately reflect Sovereign Coronation grapevines water status. Soil moisture also accurately reflected level of irrigation. Moreover, irrigation showed impact of leaf \|/, which was more negative throughout the 3 seasons for vines that were not irrigated. Irrigation had a substantial positive effect on yield (kg/vine) and its various components (clusters/vine, cluster weight, and berries/cluster) in 2003 and 2005. Berry weights were higher under the irrigated treatments at both sites. Berry weight consistently appeared to be the main factor leading to these increased yields, as inconsistent responses were noted for some yield variables. Soluble solids was highest under the ET150 and ET100 treatments both with Kc at 0.75. Both pH and TA were highest under control treatments in 2003 and 2004, but highest under irrigated treatments in 2005. Anthocyanins and phenols were highest under the control treatments in 2003 and 2004, but highest under irrigated treatments in 2005. MA and TVE were highest under the ET150 treatments. Vine and soil water status measurements (soil moisture, leaf \|/, and transpiration) confirmed that irrigation was required for the summers of 2003 and 2005 due to dry weather in those years. They also partially supported the hypothesis that the Penman-Monteith equation is useful for calculating vineyard water needs. Both ET treatments gave clear evidence that irrigation could be effective in reducing water stress and for improving vine performance, yield and fruit composition. Use of properly scheduled irrigation was beneficial for Sovereign Coronation table grapes in the Niagara region. Findings herein should give growers some strong guidehnes on when, how and how much to irrigate their vineyards.
Resumo:
The capability of molecular mechanics for modeling the wide distribution of bond angles and bond lengths characteristic of coordination complexes was investigatecl. This was the preliminary step for future modeling of solvent extraction. Several tin-phosphine oxide COrnI)le:){es were selected as the test groUl) for t.he d,esired range of geometry they eX!libi ted as \-vell as the ligands they cOD.tained r Wllich were c\f interest in connection with solvation. A variety of adjustments were made to Allinger's M:M2 force·-field ill order to inl.prove its performance in the treatment of these systems. A set of u,nique force constants was introduced for' those terms representing the metal ligand bond lengths, bond angles, and, torsion angles. These were significantly smaller than trad.itionallY used. with organic compounds. The ~1orse poteIlt.ial energ'Y function was incorporated for the M-X l')ond lE~ngths and the cosine harmonic potential erlerg-y function was invoked for the MOP bond angle. These functions were found to accomodate the wide distribution of observed values better than the traditional harmonic approximations~ Crystal packing influences on the MOP angle were explored thr"ollgh ttle inclusion of the isolated molecule withil1 a shell cc)ntaini11g tl1e nearest neigl1'bors duri.rlg energy rninimization experiments~ This was found to further improve the fit of the MOP angle.
Resumo:
Molecular mechanics calculations were done on tetrahedral phosphine oxide zinc complexes in simulated water, benzene and hexane phases using the DREIDING II force field in the BIOGRAF molecular modeling program. The SUN workstation computer (SUN_ 4c, with SPARK station 1 processor) was used for the calculations. Experimental structural information used in the parameterization was obtained from the September 1989 version of the Cambridge Structural Database. 2 Steric and solvation energies were calculated for complexes of the type ZnCl2 (RlO)2' The calculations were done with and without inclusion of electrostatic interactions. More reliable simulation results were obtained without inclusion of charges. In the simulated gas phase, the steric energies increase regularly with number of carbons in the alkyl group, whereas they go through a maximum when solvent shells are included in the calculation. Simulated distribution ratios vary with chain length and type of chain branching and the complexes are found to be more favourable for extraction by benzene than by hexane, in accord with experimental data. Also, in line with what would be expected for a favorable extraction, calculations without electrostatics predict that the complexes are better solvated by the organic solvents than by water.
Resumo:
The one-electron reduced local energy function, t ~ , is introduced and has the property < tL)=(~>. It is suggested that the accuracy of SL reflects the local accuracy of an approximate wavefunction. We establish that <~~>~ <~2,> and present a bound formula, E~ , which is such that where Ew is Weinstein's lower bound formula to the ground state. The nature of the bound is not guaranteed but for sufficiently accurate wavefunctions it will yield a lower bound. ,-+ 1'S I I Applications to X LW Hz. and ne are presented.
Resumo:
Calculations regarding S.D. Woodruff’s property on Ontario Street. 1 page of rough penciled calculations, n.d.
Resumo:
Calculations regarding quantities needed for cutting and ditching (1 page, handwritten), March 19, 1884.