880 resultados para PLATINUM NANOSTRUCTURES
Resumo:
Department of Physics, Cochin University of Science & Technology
Resumo:
Department of Physics, Cochin University of Science and Technology
Resumo:
Nonlinear optics has been a rapidly growing field in recent decades since the invention of lasers. The systematic progress in the laser technology increases our efficiency in the generation and control of coherent optical radiations. Nonlinear optics is based on the study ofeffects and phenomena related to the interaction of intense coherent light radiation with matter. Compared to other light sources laser radiation can provide high directionality, high monochromaticiry, high brightness and high photon degeneracy. At such a very intense incident beam, the matter responds in a nonlinear manner to the incident radiation fields, which endows the media :1 characteristic to change the refractive index or absorption coe fflcient of the media or the wavelength, or the frequency of the incident electromagnetic waves. This thesis encompasses the fabrication of nonlinear optical devices based on semiconductor and metal nanostructures. The presented work focus on the experimental and theoretical discussions on nonlinear optical effects especially nonlinear absorption and refraction exhibitted by metal and semiconductor nanostructures
Resumo:
The magnetic properties of amorphous Fe–Ni–B based metallic glass nanostructures were investigated. The nanostructures underwent a spin-glass transition at temperatures below 100 K and revealed an irreversible temperature following the linear de Almeida–Thouless dependence. When the nanostructures were cooled below 25 K in a magnetic field, they exhibited an exchange bias effect with enhanced coercivity. The observed onset of exchange bias is associated with the coexistence of the spin-glass phase along with the appearance of another spin-glass phase formed by oxidation of the structurally disordered surface layer, displaying a distinct training effect and cooling field dependence. The latter showed a maximum in exchange bias field and coercivity, which is probably due to competing multiple equivalent spin configurations at the boundary between the two spin-glass phases
Resumo:
The objective of the present study is the formation of single phase Zn1−xTMxO thin films by PLD and increase the solubility limit of TM dopants. The TM doped ZnO nanostructures were also grown by hydrothermal method. The structural and morphological variation of ZnO:TM thin films and nanostructures with TM doping concentration is also investigated. The origin and enhancement of ferromagnetism in single phase Zn1−xTMxO thin films and nanostructures using spectroscopic techniques were also studied. The dependence of ablation parameters on the structural and optical properties of ZnO thin films were studied
Resumo:
The main focus and concerns of this PhD thesis is the growth of III-V semiconductor nanostructures (Quantum dots (QDs) and quantum dashes) on silicon substrates using molecular beam epitaxy (MBE) technique. The investigation of influence of the major growth parameters on their basic properties (density, geometry, composition, size etc.) and the systematic characterization of their structural and optical properties are the core of the research work. The monolithic integration of III-V optoelectronic devices with silicon electronic circuits could bring enormous prospect for the existing semiconductor technology. Our challenging approach is to combine the superior passive optical properties of silicon with the superior optical emission properties of III-V material by reducing the amount of III-V materials to the very limit of the active region. Different heteroepitaxial integration approaches have been investigated to overcome the materials issues between III-V and Si. However, this include the self-assembled growth of InAs and InGaAs QDs in silicon and GaAx matrices directly on flat silicon substrate, sitecontrolled growth of (GaAs/In0,15Ga0,85As/GaAs) QDs on pre-patterned Si substrate and the direct growth of GaP on Si using migration enhanced epitaxy (MEE) and MBE growth modes. An efficient ex-situ-buffered HF (BHF) and in-situ surface cleaning sequence based on atomic hydrogen (AH) cleaning at 500 °C combined with thermal oxide desorption within a temperature range of 700-900 °C has been established. The removal of oxide desorption was confirmed by semicircular streaky reflection high energy electron diffraction (RHEED) patterns indicating a 2D smooth surface construction prior to the MBE growth. The evolution of size, density and shape of the QDs are ex-situ characterized by atomic-force microscopy (AFM) and transmission electron microscopy (TEM). The InAs QDs density is strongly increased from 108 to 1011 cm-2 at V/III ratios in the range of 15-35 (beam equivalent pressure values). InAs QD formations are not observed at temperatures of 500 °C and above. Growth experiments on (111) substrates show orientation dependent QD formation behaviour. A significant shape and size transition with elongated InAs quantum dots and dashes has been observed on (111) orientation and at higher Indium-growth rate of 0.3 ML/s. The 2D strain mapping derived from high-resolution TEM of InAs QDs embedded in silicon matrix confirmed semi-coherent and fully relaxed QDs embedded in defectfree silicon matrix. The strain relaxation is released by dislocation loops exclusively localized along the InAs/Si interfaces and partial dislocations with stacking faults inside the InAs clusters. The site controlled growth of GaAs/In0,15Ga0,85As/GaAs nanostructures has been demonstrated for the first time with 1 μm spacing and very low nominal deposition thicknesses, directly on pre-patterned Si without the use of SiO2 mask. Thin planar GaP layer was successfully grown through migration enhanced epitaxy (MEE) to initiate a planar GaP wetting layer at the polar/non-polar interface, which work as a virtual GaP substrate, for the GaP-MBE subsequently growth on the GaP-MEE layer with total thickness of 50 nm. The best root mean square (RMS) roughness value was as good as 1.3 nm. However, these results are highly encouraging for the realization of III-V optical devices on silicon for potential applications.
Resumo:
Diamant ist ein Material mit vielen außerordentlichen Eigenschaften, die ihn zu einem äußerst vielversprechenden Kandidaten für Anwendungen in Wissen-schaft und Technik machen. In den letzten Jahren wurde Diamant häufig als einzigartige Plattform für neue Anwendungen beispielsweise in der Quanteninformationstechnologie (QIT) oder in der Magnetometrie im Nanometermaßstab eingesetzt, wobei einer der wichtigsten lumineszierenden Gitterdefekte im Diamantgitter eingesetzt wird. Dabei handelt es sich um die sogenannten Stickstoff/Fehlenstellen-Farbzentren (NV-Zentren), die im sichtbaren Bereich mit einer absoluten Photostabilität bei Raumtemperatur emittieren. In dieser Arbeit wurden NV-Zentren in Diamantnanokristalliten und –nanosäulen untersucht, die während des Wachstumsprozesses erzeugt wurden. Einzelne Diamantnanokristallite und nanokristalline Diamantschichten (NCD), aus denen Nanosäulen geätzt wurden, wurden mithilfe der Hot Filament Chemical Vapour Deposition (HFCVD) abgeschieden. Zu Vergleichszwecken wurden auch ultrananokristalline Diamantschichten (UNCD) mittels Mikrowellen-CVD (MWCVD) hergestellt. Die Filme wurden sorgfältig in Bezug auf ihre Morphologie, kristallinen Eigenschaften und Zusammensetzung untersucht. Um die Möglichkeit einer Integration dieser Diamantschichten mit temperaturempfindlichen Materialien wie III/V-Halbleitern, Metallen mit niedrigem Schmelzpunkt oder Polymeren zu untersuchen, wurde der Einfluss der Substrattemperatur ermittelt. Eindimensionale NCD- und UNCD-Diamantnanostrukturen wurden mithilfe der Elektronenstrahllithographie (EBL) und reaktivem Ionenätzen in einem induktiv gekoppelten O2-Plasma (ICP-RIE) hergestellt. Zur Vorbereitung wurden zunächst die Ätzraten in Abhängigkeit von den vier wichtigsten Parametern ermittelt. Weitere Erkenntnisse über die Ätzmechanismen wurden durch Ätzexperiment mit unstrukturierten NCD- und UNCD-Schichten erhalten Mittels der EBL konnten mithilfe von Gold-Ätzmasken Nanosäulen mit Durchmessern von 50 nm bis zu 1 μm hergestellt werden.Eine optische Charakterisierung der NCD- und UNCD-Nanosäulen erfolgte mithilfe von Fluorenzenz-Mapping und Photomumineszenz-Spektroskopie. Diese Messungen ergaben, dass in beiden Arten von Säulen NV-Zentren vorhanden sind. Allerdings wurden nur in NCD-Säulen die gewünschten NV--Zentren gefunden, in UNCD-Säulen hingegen nur NV0-Zentren.
Resumo:
Intensive, ultrakurze Laserpulse regen Festkörper in einen Zustand an, in dem die Elektronen hohe Temperaturen erlangen, während das Gitter kalt bleibt. Die heißen Elektronen beeinflussen das sog. Laser-angeregte interatomare Potential bzw. die Potentialenergiefläche, auf der die Ionen sich bewegen. Dieses kann neben anderen ultrakurzen Prozessen zu Änderungen der Phononfrequenzen (phonon softening oder phonon hardening) führen. Viele ultrakurze strukturelle Phänomene in Festkörpern hängen bei hohen Laseranregungen von Änderungen der Phononfrequenzen bei niedrigeren Anregungen ab. Um die Laser-bedingten Änderungen des Phononenspektrums von Festkörpern beschreiben zu können, haben wir ein auf Temperatur-abhängiger Dichtefunktionaltheorie basierendes Verfahren entwickelt. Die dramatischen Änderungen nach einer Laseranregung in der Potentialenergiefläche werden durch die starke Veränderung der Zustandsdichte und der Besetzungen der Elektronen hervorgerufen. Diese Änderungen in der Zustandsdichte und den Besetzungszahlen können wir mit unserer Methode berechnen, um dann damit das Verhalten der Phononen nach einer Laseranregung zu analysieren. Auf diese Art und Weise studierten wir den Einfluss einer Anregung mit einem intensiven, ultrakurzen Laserpuls auf repräsentative Phonon Eigenmoden in Magnesium, Kupfer und Aluminium. Wir stellten dabei in manchen Gitterschwingungen entweder eine Abnahme (softening) und in anderen eine Zunahme (hardening) der Eigenfrequenz fest. Manche Moden zeigten bei Variation der Laseranregungsstärke sogar beide Verhaltensweisen. Das eine Phonon-Eigenmode ein hardening und softening zeigen kann, wird durch das Vorhandensein von van Hove Singularitäten in der elektronischen Zustandsdichte des betrachteten Materials erklärt. Für diesen Fall stellt unser Verfahren zusammen mit der Sommerfeld-Entwicklung die Eigenschaften der Festkörper Vibrationen in Verbindung mit den Laser induzierten Veränderungen in den elektronischen Besetzungen für verschiedene Phonon-eingefrorene Atomkonfigurationen. Auch die absolute Größe des softening und hardening wurde berechnet. Wir nehmen an, dass unsere Theorie Licht in die Effekte der Laseranregung von verschiedenen Materialien bringt. Außerdem studierten wir mit Hilfe von Dichtefunktionaltheorie die strukturellen Material-Eigenschaften, die durch kurze XUV Pulse induziert werden. Warme dichte Materie in Ultrakurzpuls angeregten Magnesium wurde analysiert und verglichen mit den Ergebnissen bei durch Laser Anregung bedingten Änderungen. Unter Verwendung von elektronischer-Temperatur-abhängiger Dichtefunktionaltheorie wurden die Änderungen in den Bindungseigenschaften von warmen dichten Magnesium studiert. Wir stellten dabei beide Effekte, Verstärkung und Abschwächung von Bindungen, bei jeweils verschiedenen Phonon Eigenmoden von Magnesium auf Grund von der Erzeugung von Rumpflöchern und dem Vorhandensein von heißen Elektronen fest. Die zusätzliche Erzeugung von heißen Elektronen führt zu einer Änderung der Bindungscharakteristik, die der Änderung, die durch die bereits vorhandenen Rumpflöcher hervorgerufen wurde, entgegen wirkt. Die thermischen Eigenschaften von Nanostrukturen sind teilweise sehr wichtig für elektronische Bauteile. Wir studierten hier ebenfalls den Effekt einer einzelnen Graphen Lage auf Kupfer. Dazu untersuchten wir mit Dichtefunktionaltheorie die strukturellen- und Schwingungseigenschaften von Graphen auf einem Kupfer Substrat. Wir zeigen, dass die schwache Wechselwirkung zwischen Graphen und Kupfer die Frequenz der aus der Ebene gerichteten akustischen Phonon Eigenmode anhebt und die Entartung zwischen den aus der Ebene gerichteten akustischen und optischen Phononen im K-Punkt des Graphen Spektrums aufhebt. Zusätzlich führten wir ab initio Berechnungen zur inelastischen Streuung eines Helium Atoms mit Graphen auf einem Kuper(111) Substrat durch. Wir berechneten dazu das Leistungsspektrum, das uns eine Idee über die verschiedenen Gitterschwingungen des Graphene-Kuper(111) Systems gibt, die durch die Kollision des Helium Atom angeregt werden. Wir brachten die Positionen der Peaks im Leistungsspektrum mit den Phonon Eigenfrequenzen, die wir aus den statischen Rechnungen erhalten haben, in Beziehung. Unsere Ergebnisse werden auch verglichen mit den Ergebnissen experimenteller Daten zur Helium Streuung an Graphen-Kupfer(111) Oberflächen.
Resumo:
The unique properties of nanostructures associated with their low dimensionality give rise to new opportunities for research on nanoscale heat transfer and energy conversion. Inspired by Majumdar’s analysis of the novel aspects of heat, mass, and charge flow across the interface between hard and soft materials, some perspectives about research frontiers in nanoscale heat transfer and energy conversion are provided.
Resumo:
Solid phase reaction of NiPt/Si and NiPt/SiGe is one of the key issues for silicide (germanosilicide) technology. Especially, the NiPtSiGe, in which four elements are involved, is a very complex system. As a result, a detailed study is necessary for the interfacial reaction between NiPt alloy film and SiGe substrate. Besides using traditional material characterization techniques, characterization of Schottky diode is a good measure to detect the interface imperfections or defects, which are not easy to be found on large area blanket samples. The I-V characteristics of 10nm Ni(Pt=0, 5, 10 at.%) germanosilicides/n-Si₀/₇Ge₀.₃ and silicides/n-Si contact annealed at 400 and 500°C were studied. For Schottky contact on n-Si, with the addition of Pt in the Ni(Pt) alloy, the Schottky barrier height (SBH) increases greatly. With the inclusion of a 10% Pt, SBH increases ~0.13 eV. However, for the Schottky contacts on SiGe, with the addition of 10% Pt, the increase of SBH is only ~0.04eV. This is explained by pinning of the Fermi level. The forward I-V characteristics of 10nm Ni(Pt=0, 5, 10 at.%)SiGe/SiGe contacts annealed at 400°C were investigated in the temperature range from 93 to 300K. At higher temperature (>253K) and larger bias at low temperature (<253K), the I-V curves can be well explained by a thermionic emission model. At lower temperature, excess currents at lower forward bias region occur, which can be explained by recombination/generation or patches due to inhomogenity of SBH with pinch-off model or a combination of the above mechanisms.
Resumo:
This paper discusses a study to determine whether changes in stapedial reflex thresholds can be utilized as an early indicator of cochlear damage with ongoing cid-platinum therapy.