426 resultados para PHOSPHATIDYLINOSITOL
Resumo:
A cDNA encoding a signal transduction protein with a Src homology 2 (SH2) domain and a tyrosine phosphorylation site was cloned from a rat lymph node cDNA library. This protein, which we designate Lnk, has a calculated molecular weight of 33,988. When T lymphocytes were activated by antibody-mediated crosslinking of the T-cell receptor and CD4, Lnk became tyrosine phosphorylated. In activated T lymphocytes, phospholipase C gamma 1, phosphatidylinositol 3-kinase, and Grb-2 coimmunoprecipitated with Lnk. Our results suggest that Lnk becomes tyrosine phosphorylated and links the immediate tyrosine phosphorylation signals of the TCR to the distal phosphatidylinositol 3-kinase, phospholipase C gamma 1 and Ras signaling pathways through its multifunctional tyrosine phosphorylation site.
Resumo:
The MKC7 gene was isolated as a multicopy suppressor of the cold-sensitive growth phenotype of a yeast kex2 mutant, which lacks the protease that cleaves pro-alpha-factor and other secretory proproteins at pairs of basic residues in a late Golgi compartment in yeast. MKC7 encodes an aspartyl protease most closely related to product of the YAP3 gene, a previously isolated multicopy suppressor of the pro-alpha-factor processing defect of a kex2 null. Multicopy MKC7 suppressed the alpha-specific mating defect of a kex2 null as well as multicopy YAP3 did, but multicopy YAP3 was a relatively weak suppressor of kex2 cold sensitivity. Overexpression of MKC7 resulted in production of a membrane-associated proteolytic activity that cleaved an internally quenched fluorogenic peptide substrate on the carboxyl side of a Lys-Arg site. Treatment with phosphatidylinositol-specific phospholipase C shifted Mkc7 activity from the detergent to the aqueous phase in a Triton X-114 phase separation, indicating that membrane attachment of Mkc7 is mediated by a glycosyl-phosphatidylinositol anchor. Although disruption of MKC7 or YAP3 alone resulted in no observable phenotype, mkc7 yap3 double disruptants exhibited impaired growth at 37 degrees C. Disruption of MKC7 and YAP3 in a kex2 null mutant resulted in profound temperature sensitivity and more generalized cold sensitivity. The synergism of mkc7, yap3, and kex2 null mutations argues that Mkc7 and Yap3 are authentic processing enzymes whose functions overlap those of Kex2 in vivo.
Inhibition of phosphatidylinositol 3-kinase activity by association with 14-3-3 proteins in T cells.
Resumo:
Proteins of the 14-3-3 family can associate with, and/or modulate the activity of, several protooncogene and oncogene products and, thus, are implicated in regulation of signaling pathways. We report that 14-3-3 is associated with another important transducing enzyme, phosphatidylinositol 3-kinase (PI3-K). A recombinant 14-3-3 fusion protein bound several tyrosine-phosphorylated proteins from antigen receptor-stimulated T lymphocytes. PI3-K was identified by immunoblotting and enzymatic assays as one of the 14-3-3-binding proteins in resting or activated cells. Moreover, endogenous 14-3-3 and PI3-K were coimmunoprecipitated from intact T cells. Far-Western blots of gel-purified, immunoprecipitated PI3-K with a recombinant 14-3-3 fusion protein revealed direct binding of 14-3-3 to the catalytic subunit (p110) of PI3-K. Finally, anti-phosphotyrosine immunoprecipitates from activated, 14-3-3-overexpressing cells contained lower PI3-K enzymatic activity than similar immunoprecipitates from control cells. These findings suggest that association of 14-3-3 with PI3-K in hematopoietic (and possibly other) cells regulates the enzymatic activity of PI3-K during receptor-initiated signal transduction.
Resumo:
Phosphatidylinositol (PI) 3-kinases have been implicated in several aspects of intracellular membrane trafficking, although a detailed mechanism is yet to be established. In this study we demonstrated that wortmannin, a specific inhibitor of PI 3-kinases, inhibited constitutive endocytosis of horseradish peroxidase and transferrin in BHK-21 and TRVb-1 cells. The IC50 was approximately 40 ng/ml (93 nM). In addition, wortmannin blocked the stimulation of horseradish peroxidase uptake by the small GTPase Rab5 but not the stimulation by the GTPase-defective, constitutively activated Rab5 Gln79-->Leu mutant (Rab5:Q79L), providing further evidence that PI 3-kinase activity is essential for the early endocytic process. To further investigate the mechanism, we examined the effect of wortmannin on early endosome fusion in vitro. Wortmannin decreased endosome fusion by 80% with an IC50 value similar to that in intact cells. Addition of Rab5:Q79L but not wild-type Rab5 reversed the inhibitory effect of wortmannin. Furthermore, addition of a constitutively activated PI 3-kinase but not its inactive counterpart stimulated early endosome fusion in vitro. These results strongly indicate that PI 3-kinase plays an important role in regulation of early endosome fusion, probably via activation of Rab5.
Resumo:
Recent experimental evidence has focused attention to the role of two molecules, insulin receptor substrate 1 (IRS-1) and phosphatidylinositol 3-kinase (PI3-kinase), in linking the insulin receptor to glucose uptake; IRS-1 knockout mice are insulin resistant, and pharmacological inhibitors of PI3-kinase block insulin-stimulated glucose uptake. To investigate the role of PI3-kinase and IRS-1 in insulin-stimulated glucose uptake we examined whether stimulation of insulin-sensitive cells with platelet-derived growth factor (PDGF) or with interleukin 4 (IL-4) stimulates glucose uptake; the activated PDGF receptor (PDGFR) directly binds and activates PI3-kinase, whereas the IL-4 receptor (IL-4R) activates PI3-kinase via IRS-1 or the IRS-1-related molecule 4PS. We found that stimulation of 3T3-L1 adipocytes with PDGF resulted in tyrosine phosphorylation of the PDGFR and activation of PI3-kinase in these cells. To examine whether IL-4 stimulates glucose uptake, L6 myoblasts were engineered to overexpress GLUT4 as well as both chains of the IL-4R (L6/IL-4R/GLUT4); when these L6/IL-4R/GLUT4 myoblasts were stimulated with IL-4, IRS-1 became tyrosine phosphorylated and associated with PI3-kinase. Although PDGF and IL-4 can activate PI3-kinase in the respective cell lines, they do not possess insulin's ability to stimulate glucose uptake and GLUT4 translocation to the plasma membrane. These findings indicate that activation of PI3-kinase is not sufficient to stimulate GLUT4 translocation to the plasma membrane. We postulate that activation of a second signaling pathway by insulin, distinct from PI3-kinase, is necessary for the stimulation of glucose uptake in insulin-sensitive cells.
Resumo:
CD28 is a costimulatory receptor found on the surface of most T lymphocytes. Engagement of CD28 induces interleukin 2 (IL-2) production and cell proliferation when combined with an additional signal such as treatment with phorbol ester, an activator of protein kinase C. Recent studies have established that after CD28 ligation, the cytoplasmic domain of CD28 can bind to the 85-kDa subunit of phosphatidylinositol 3-kinase (PI3 kinase). There is a concomitant increase in PI3 lipid kinase activity that may be important in CD28 signaling. Despite the requirement of phorbol 12-myristate 13-acetate (PMA) for effector function, we have found, however, that treatment of Jurkat T cells with the phorbol ester PMA dramatically inhibits (i) the association of PI3 kinase with CD28, (ii) the ability of p85 PI3 kinase to be immunoprecipitated by anti-phosphotyrosine antibodies, and (iii) the induction of PI3 kinase activity after stimulation of the cells with the anti-CD28 monoclonal antibody 9.3. These changes occur within minutes of PMA treatment and are persistent. In addition, we have found that wortmannin, a potent inhibitor of PI3 kinase, does not interfere with the induction of IL-2 after stimulation of Jurkat T cells with anti-CD28 monoclonal antibody and PMA. We conclude that PI3 kinase activity may not be required for CD28-dependent IL-2 production from Jurkat T cells in the presence of PMA.
Resumo:
The mammalian phosphatidylinositol/phosphatidylcholine transfer proteins (PI-TPs) catalyze exchange of phosphatidylinositol (PI) or phosphatidylcholine (PC) between membrane bilayers in vitro. We find that Ser-25, Thr-59, Pro-78, and Glu-248 make up a set of rat (r) PI-TP residues, substitution of which effected a dramatic reduction in the relative specific activity for PI transfer activity without significant effect on PC transfer activity. Thr-59 was of particular interest as it is a conserved residue in a highly conserved consensus protein kinase C phosphorylation motif in metazoan PI-TPs. Replacement of Thr-59 with Ser, Gln, Val, Ile, Asn, Asp, or Glu effectively abolished PI transfer capability but was essentially silent with respect to PC transfer activity. These findings identify rPI-TP residues that likely cooperate to form a PI head-group binding/recognition site or that lie adjacent to such a site. Finally, the selective sensitivity of the PI transfer activity of rPI-TP to alteration of Thr-59 suggests a mechanism for in vivo regulation of rPI-TP activity.
Resumo:
T-cell activation requires cooperative signals generated by the T-cell antigen receptor zeta-chain complex (TCR zeta-CD3) and the costimulatory antigen CD28. CD28 interacts with three intracellular proteins-phosphatidylinositol 3-kinase (PI 3-kinase), T cell-specific protein-tyrosine kinase ITK (formerly TSK or EMT), and the complex between growth factor receptor-bound protein 2 and son of sevenless guanine nucleotide exchange protein (GRB-2-SOS). PI 3-kinase and GRB-2 bind to the CD28 phosphotyrosine-based Tyr-Met-Asn-Met motif by means of intrinsic Src-homology 2 (SH2) domains. The requirement for tyrosine phosphorylation of the Tyr-Met-Asn-Met motif for SH2 domain binding implicates an intervening protein-tyrosine kinase in the recruitment of PI 3-kinase and GRB-2 by CD28. Candidate kinases include p56Lck, p59Fyn, zeta-chain-associated 70-kDa protein (ZAP-70), and ITK. In this study, we demonstrate in coexpression studies that p56Lck and p59Fyn phosphorylate CD28 primarily at Tyr-191 of the Tyr-Met-Asn-Met motif, inducing a 3- to 8-fold increase in p85 (subunit of PI 3-kinase) and GRB-2 SH2 binding to CD28. Phosphatase digestion of CD28 eliminated binding. In contrast to Src kinases, ZAP-70 and ITK failed to induce these events. Further, ITK binding to CD28 was dependent on the presence of p56Lck and is thus likely to act downstream of p56Lck/p59Fyn in a signaling cascade. p56Lck is therefore likely to be a central switch in T-cell activation, with the dual function of regulating CD28-mediated costimulation as well as TCR-CD3-CD4 signaling.
Resumo:
The synthesis of phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2], the immediate precursor of intracellular signals generated by calcium-mobilizing hormones and growth factors, is initiated by the conversion of phosphatidylinositol to phosphatidylinositol 4-phosphate [PtdIns(4)P] by phosphatidylinositol 4-kinase (PtdIns 4-kinase). Although cells contain several PtdIns 4-kinases, the enzyme responsible for regulating the synthesis of hormone-sensitive PtdIns(4,5)P2 pools has not been identified. In this report we describe the inhibitory effect of micromolar concentrations of wortmannin (WT) on the synthesis of hormone-sensitive PtdIns(4)P and PtdIns(4,5)P2 pools in intact adrenal glomerulosa cells, and the presence of a WT-sensitive PtdIns 4-kinase in adrenocortical extracts. In addition to its sensitivity to the PtdIns 3-kinase inhibitor WT, this enzyme is distinguished from the recognized membrane-bound PtdIns 4-kinases by its molecular size and weak membrane association. Inhibition of this PtdIns 4-kinase by WT results in rapid loss of the hormone-sensitive PtdIns(4,5)P2 pool in angiotensin II-stimulated glomerulosa cells. Consequently, WT treatment inhibits the sustained but not the initial increases in inositol 1,4,5-trisphosphate and cytoplasmic [Ca2+] in a variety of agonist-stimulated cells, including adrenal glomerulosa cells, NIH 3T3 fibroblasts, and Jurkat lymphoblasts. These results indicate that a specific WT-sensitive PtdIns 4-kinase is critical for the maintenance of the agonist-sensitive polyphosphoinositide pool in several cell types.
Resumo:
The p70 S6 kinase is activated by insulin and mitogens through multisite phosphorylation of the enzyme. One set of activating phosphorylations occurs in a putative autoinhibitory domain in the noncatalytic carboxyl-terminal tail. Deletion of this tail yields a variant (p70 delta CT104) that nevertheless continues to be mitogen regulated. Coexpression with a recombinant constitutively active phosphatidylinositol (PI) 3-kinase (EC 2.7.1.137) gives substantial activation of both full-length p70 and p70 delta CT104 but not Rsk. Activation of p70 delta CT104 by PI 3-kinase and inhibition by wortmannin are each accompanied by parallel and selective changes in the phosphorylation of p70 Thr-252. A Thr or Ser at this site, in subdomain VIII of the catalytic domain just amino-terminal to the APE motif, is necessary for p70 40S kinase activity. The inactive ATP-binding site mutant K123M p70 delta CT104 undergoes phosphorylation of Thr-252 in situ but does not undergo direct phosphorylation by the active PI 3-kinase in vitro. PI 3-kinase provides a signal necessary for the mitogen activation of the p70 S6 kinase, which directs the site-specific phosphorylation of Thr-252 in the p70 catalytic domain, through a distinctive signal transduction pathway.
Resumo:
Lowe syndrome, also known as oculocerebrorenal syndrome, is caused by mutations in the X chromosome-encoded OCRL gene. The OCRL protein is 51% identical to inositol polyphosphate 5-phosphatase II (5-phosphatase II) from human platelets over a span of 744 aa, suggesting that OCRL may be a similar enzyme. We engineered a construct of the OCRL cDNA that encodes amino acids homologous to the platelet 5-phosphatase for expression in baculovirus-infected Sf9 insect cells. This cDNA encodes aa 264-968 of the OCRL protein. The recombinant protein was found to catalyze the reactions also carried out by platelet 5-phosphatase II. Thus OCRL converts inositol 1,4,5-trisphosphate to inositol 1,4-bisphosphate, and it converts inositol 1,3,4,5-tetrakisphosphate to inositol 1,3,4-trisphosphate. Most important, the enzyme converts phosphatidylinositol 4,5-bisphosphate to phosphatidylinositol 4-phosphate. The relative ability of OCRL to catalyze the three reactions is different from that of 5-phosphatase II and from that of another 5-phosphatase isoenzyme from platelets, 5-phosphatase I. The recombinant OCRL protein hydrolyzes the phospholipid substrate 10- to 30-fold better than 5-phosphatase II, and 5-phosphatase I does not cleave the lipid at all. We also show that OCRL functions as a phosphatidylinositol 4,5-bisphosphate 5-phosphatase in OCRL-expressing Sf9 cells. These results suggest that OCRL is mainly a lipid phosphatase that may control cellular levels of a critical metabolite, phosphatidylinositol 4,5-bisphosphate. Deficiency of this enzyme apparently causes the protean manifestations of Lowe syndrome.
Resumo:
A cDNA corresponding to a putative phosphatidylinositol-specific phospholipase C (PI-PLC) in the higher plant Arabidopsis thaliana was cloned by use of the polymerase chain reaction. The cDNA, designated cAtPLC1, encodes a putative polypeptide of 561 aa with a calculated molecular mass of 64 kDa. The putative product includes so-called X and Y domains found in all PI-PLCs identified to date. In mammalian cells, there are three types of PI-PLC, PLC-beta, -gamma, and -delta. The overall structure of the putative AtPLC1 protein is most similar to that of PLC-delta, although the AtPLC1 protein is much smaller than PLCs from other organisms. The recombinant AtPLC1 protein synthesized in Escherichia coli was able to hydrolyze phosphatidylinositol 4,5-bisphosphate and this activity was completely dependent on Ca2+, as observed also for mammalian PI-PLCs. These results suggest that the AtPLC1 gene encodes a genuine PI-PLC of a higher plant. Northern blot analysis showed that the AtPLC1 gene is expressed at very low levels in the plant under normal conditions but is induced to a significant extent under various environmental stresses, such as dehydration, salinity, and low temperature. These observations suggest that AtPLC1 might be involved in the signal-transduction pathways of environmental stresses and that an increase in the level of AtPLC1 might amplify the signal, in a manner that contributes to the adaptation of the plant to these stresses.
Resumo:
Classic cadherins are adhesion-activated cell signaling receptors. In particular, homophilic cadherin ligation can directly activate Rho family GTPases and phosphatidylinositol 3-kinase (PI3-kinase), signaling molecules with the capacity to support the morphogenetic effects of these adhesion molecules during development and disease. However, the molecular basis for cadherin signaling has not been elucidated, nor is its precise contribution to cadherin function yet understood. One attractive hypothesis is that cadherin-activated signaling participates in stabilizing adhesive contacts ( Yap, A. S., and Kovacs, E. M. ( 2003) J. Cell Biol. 160, 11-16). We now report that minimal mutation of the cadherin cytoplasmic tail to uncouple binding of p120-ctn ablated the ability of E-cadherin to activate Rac. This was accompanied by profound defects in the capacity of cells to establish stable adhesive contacts, defects that were rescued by sustained Rac signaling. These data provide direct evidence for a role of cadherin-activated Rac signaling in contact formation and adhesive stabilization. In contrast, cadherin-activated PI3-kinase signaling was not affected by loss of p120-ctn binding. The molecular requirements for E-cadherin to activate Rac signaling thus appear distinct from those that stimulate PI3-kinase, and we postulate that p120-ctn may play a central role in the E-cadherin-Rac signaling pathway.
Resumo:
Neurotransmitter release and hormonal secretion are highly regulated processes culminating in the calcium-dependent fusion of secretory vesicles with the plasma membrane. Here, we have identified a role for phosphatidylinositol 3-kinase C2 alpha (PI3K-C2 alpha) and its main catalytic product, PtdIns3P, in regulated exocytosis. In neuroendocrine cells, PI3K-C2 alpha is present on a subpopulation of mature secretory granules. Impairment of PI3K-C2 alpha function specifically inhibits the ATP-dependent priming phase of exocytosis. Overexpression of wild-type PI3K-C2 alpha enhanced secretion, whereas transfection of PC12 cells with a catalytically inactive PI3K-C2 alpha mutant or a 2xFYVE domain sequestering PtdIns3P abolished secretion. Based on these results, we propose that production of PtdIns3P by PI3K-C2 alpha is required for acquisition of fusion competence in neurosecretion.
Resumo:
In the process of internalization of molecules from the extracellular milieu, a cell uses multiple endocytic pathways, consequently generating different endocytic vesicles. These primary endocytic vesicles are targeted to specific destinations inside the cell. Here, we show that GPI-anchored proteins are internalized by an Arf6-independent mechanism into GPI-anchored protein-enriched early endosomal compartments (GEECs). Internalized GPI-anchored proteins and the fluid phase are first visualized in GEECs that are acidic, primary endocytic structures, negative for early endosomal markers, Rab4, Rab5, and early endosome antigen (EEA)1. They subsequently acquire Rab5 and EEA1 before homotypic fusion with other GEECs, and heterotypic fusion with endosomes containing cargo from the clathrin-dependent endocytic pathway. Although, the formation of GEECs is unaffected by inhibition of Rab5 GTPase and phosphatidylinositol-3'-kinase (PI3K) activity, their fusion with sorting endosomes is dependent on both activities. Overexpression of Rab5 reverts PI3K inhibition of fusion, providing evidence that Rab5 effectors play important roles in heterotypic fusion between the dynamin-independent GEECs and clathrin- and dynamin-dependent sorting endosomes.