980 resultados para PEROVSKITE-TYPE OXIDES


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Perovskites oxides win importance by its properties and commercials applications, they have a high thermal stability, have conductive properties, electrical, catalytic, electro catalytic, optical and magnetic, and are thermally stable. Because of these properties, are being widely studied as carriers of oxygen in the process of power generation with CO2 capture. In this work, the base carrier system La1-xMexNiO3 (Me = Ca and Sr) were synthesized by the method via the combustion reaction assisted by microwave. were synthesized from the combustion reaction method by microwave process. This method control the synthesi`s conditions to obtain materials with specific characteristics. The carriers calcined at 800 ° C/2h were analyzed by thermal analysis (TG-DTA), to verify its thermal stability, X-ray diffraction (XRD) to verify the phase formation, with subsequent refinement by the Rietveld method, to quantify the percentage of phases formed, the surface area by BET method was determined, scanning electron microscopy (SEM) was obtained to evaluate the material morphology and temperature programmed reduction (TPR) was done to observe the metallic phase of the nickel. After all proposed characterization and analysis of their results can be inferred to these oxides, key features so that they can be applied as carriers for combustion reactions in chemical cycles. The final products showed perovskite-type structures K2NiF4 (main) and ABO3.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Ceramic powders based on oxides of perovskite-type structure is of fundamental interest nowadays, since they have important ionic-electronic conductivity in the use of materials with technological applications such as gas sensors, oxygen permeation membranes, catalysts and electrolytes for solid oxide fuel cells (SOFC). The main objective of the project is to develop nanostructured ceramic compounds quaternary-based oxide Barium (Br), Strontium (Sr), Cobalt (Co) and Iron (Fe). In this project were synthesized compounds BaxSr(1-x)Co0, 8Fe0,2O3- (x = 0.2, 0.5 and 0.8) through the oxalate co-precipitation method. The synthesized powders were characterized by thermogravimetric analysis and differential thermal analysis (TGADTA), X-ray diffraction (XRD) with the Rietveld refinement using the software MAUD and scanning electron microscopy (SEM). The results showed that the synthesis technique used was suitable for production of nanostructured ceramic solid solutions. The powders obtained had a crystalline phase with perovskite-type structure. The TGA-DTA results showed that the homogeneous phase of interest was obtained temperature above 1034°C. It was also observed that the heating rate of the calcination process did not affect the elimination of impurities present in the ceramic powder. The variation in the addition of barium dopant promoted changes in the average crystallite size in the nanometer range, the composition being BSCF(5582) obtained the lowest value (179.0nm). The results obtained by oxalate co-precipitation method were compared with those synthesis methods in solid state and EDTA-citrate method

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Pós-graduação em Ciência e Tecnologia de Materiais - FC

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A simple and efficient route to prepare supported nanocrystalline oxides is presented. The synthesis procedure, i.e. in situ autocombustion of a glycine complex, allows the production of nanocrystals in a porous matrix presenting larger pore size. An example of successful formation of 2-5 nm nanocrystals is given for a single oxide (Fe2O3), a mixed-oxide structure (LaCoO3 perovskite-type) and a nickel-doped oxide. © 2011 The Royal Society of Chemistry.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Póster presentado en: 21st World Hydrogen Energy Conference 2016. Zaragoza, Spain. 13-16th June, 2016

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The phase-interconversions between the spinel-, brownmillerite-, defect rocksalt and perovskite-type structures have been investigated by way of (i) introducing deficiency in A-sites in CaxMn2-xO3 (0.05 <= x <= 1) i.e., by varying Ca/Mn ratio from 0.025 to 1 and (ii) nonstoichiometric CaMnO3-delta (CMO) with 0.02 <= delta <= 1. The temperature dependence of resistivity (rho-T) have been investigated on nonstoichiometric CaMnO3-delta (undoped) as well as the CMO substituted with donor impurities such as La3+, Y3+, Bi3+ or acceptor such as Na1+ ion at the Ca-site. The rho-T characteristics of nonstoichiometric CaMnO3-delta is strongly influenced by oxygen deficiency, which controls the concentration of Mn3+ ions and, in turn, affects the resistivity, rho. The results indicated that the substitution of aliovalent impurities at Ca-site in CaMnO3 has similar effects as of CaMnO3-delta ( undoped) annealed in atmospheres of varying partial pressures whereby electron or hole concentration can be altered, yet the doped samples can be processed in air or atmospheres of higher P-O2. The charge transport mechanisms of nonstoichiometric CaMnO3-delta as against the donor or acceptor doped CaMnO3 (sintered in air, P-O2 similar to 0.2 atm) have been predicted. The rho (T) curves of both donor doped CaMnO3 as well as non-stoichiometric CaMnO3-delta, is predictable by the small polaron hopping (SPH) model, which changes to the variable range hopping (VRH) at low temperatures whereas the acceptor doped CaMnO3 exhibited an activated semiconducting hopping ( ASH) throughout the measured range of temperature (10-500 K).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

New glasses of 16.66SrO–16.66[(1 − x)Bi2O3–xSm2O3]–16.66Nb2O5–50Li2B4O7 (0 ≤ x ≤ 0.5, in molar ratio), i.e., the pseudo-binary Sm2O3-doped SrBi2Nb2O9–Li2B4O7 glass system, giving the crystallization of Sm3+-doped SrBi2Nb2O9 nanocrystals are developed. It is found that the thermal stability of the glasses against the crystallization and the optical band gap energy increases with increasing Sm2O3 content. The formation of fluorite-type Sm3+-doped SrBi2Nb2O9 nanocrystals (diameters: 13–37 nm) with a cubic structure is confirmed in the crystallized (530 °C, 3 h) samples from X-ray powder diffraction analyses, Raman scattering spectrum measurements, and transmission electron microscope observations. The effect of Sm3+-doping on the microstructure, Raman scattering peak positions, and dielectric properties of composites comprising of fluorite-type SrBi2Nb2O9 nanocrystals and the Li2B4O7 glassy phase is clarified. It is found that fluorite-type SrBi2Nb2O9 nanocrystals transform to stable perovskite-type SrBi2Nb2O9 crystals with an orthorhombic structure by heat treatments at around 630 °C.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report magnetization and magnetoresistance studies of the geometrically frustrated spinel compound LiMn2O4 near its charge ordering temperature. The effect of a 7 T magnetic field is to very slightly shift the transition in the resistivity to lower temperatures resulting in large negative magnetoresistance with significant hysteresis. This hysteresis is not reflected in the magnetization. These observations are compared with what is found in the colossal magnetoresistance and charge ordering perovskite manganese oxides. The manner in which geometric frustration influences the coupling of charge and spin degrees of freedom is examined.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Growth and characterization of high-temperature-superconducting YBa2Cu3O7 and several metallic-oxide thin films by pulsed laser deposition is described here. An overview of substrates employed for epitaxial growth of perovskite-related oxides is presented. Ag-doped YBa2Cu3O7 films grown on bare sapphire are shown to give T-c = 90 K, critical current > 10(6) A/cm(2) at 77 K and surface resistance = 450 mu Omega. Application of epitaxial metallic LaNiO3 thin films as an electrode for ferroelectric oxide and as a normal metal layer barrier in the superconductor-normal metal-superconductor (SNS) Josephson junction is presented. Observation of giant magnetoresistance (GMR) in the metallic La0-6Pb0-4MnO3 thin films up to 50% is highlighted.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Low-temperature dielectric measurements on FeTiMO(6) (M = Ta,Nb,Sb) rutile-type oxides at frequencies from 0.1 Hz to 10 MHz revealed anomalous dielectric relaxations with frequency dispersion. Unlike the high-temperature relaxor response of these materials, the low-temperature relaxations are polaronic in nature. The relationship between frequency and temperature of dielectric loss peak follows T(-1/4) behavior. The frequency dependence of ac conductivity shows the well-known universal dielectric response, while the dc conductivity follows Mott variable range hopping (VRH) behavior, confirming the polaronic origin of the observed dielectric relaxations. The frequency domain analysis of the dielectric spectra shows evidence for two relaxations, with the high-frequency relaxations following Mott VRH behavior more closely. Significantly, the Cr- and Ga-based analogs, CrTiNbO(6) and GaTiMO(6) (M = Ta,Nb), that were also studied, did not show these anomalies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Phase-singular solids of the composition, (Mg1−(x+y) Cax Lay)(Ti1−yAly)O3 (x = 0 to 0.88; y = 0.05 to 0.35) having the cubic perovskite-type structure were prepared by the substitution of La3+ and Al3+ in equivalent quantities which brought about complete miscibility between MgTiO3 and CaTiO3. These ceramics showed relative permittivities of 16.5 to 50 (at 6 GHz) with increasing Ca content, high Q values of 10 000 to 30 000 and retained near-zero temperature coefficients in permittivity at optimum y values. Their dielectric characteristics are better accountable in terms of the positional disorder rather than the tolerance factor of perovskite structure.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Heterophase structures in lead-free perovskite-type ferroelectric solid solutions of (1 - z)(Na0.5Bi0.5)TiO3 - zBaTiO(3) are analysed for a few critical compositions near the morphotropic phase boundary (z = 0.05-0.07). Examples of the phase coexistence and elastic matching of the phases from different symmetry groups are considered to find optimum volume fractions of specific domain types and coexisting phases at the complete stress relief in two-phase samples. Some interrelations between these volume fractions are described using variants of the domain arrangement at changes in the composition and unit-cell parameters. The evaluated room-temperature volume fractions of the ferroelectric monoclinic (Cm symmetry) and tetragonal (P4mm symmetry) phases near the morphotropic phase boundary are in agreement with experimental data.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We investigate the structural stability and electronic properties of ordered perovskite-type compounds Ba2MIrO6 (M = La, Y) by use of density functional theory. Cubic (Fm-3m), rhombohedral (R-3) and monoclinic (P2(1)/n) phases are considered for each compound. It was found that the most energetically stable phase for Ba2YIrO6 and Ba2LaIrO6 is P2(1)/n andR-3, respectively. It is also interesting to find that Ba2YIrO6 in R-3 phase, which was not reported in experiment, has a slightly lower energy than experimentally observed cubic Fm-3m phase.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Perovskite-type SrZrO3 has been investigated as a candidate material for thermal barrier coating application. During plasma spraying of SrZrO3, SrO volatilized more than ZrO2 and the coating composition deviates from initial stoichiometry. In this investigation, partial evaporation was investigated by spraying SrZrO3 powders into water. The influences of spraying current, distance and particle size of the powder on the partial evaporation were also investigated in a quantitative way. With optimized spraying parameters, stoichiometric SrZrO3 coating was produced by adding an excess amount of Sr in the precursors before plasma spraying to compensate for the volatilized component.