84 resultados para PDO
Resumo:
Studies addressing climate variability during the last millennium generally focus on variables with a direct influence on climate variability, like the fast thermal response to varying radiative forcing, or the large-scale changes in atmospheric dynamics (e. g. North Atlantic Oscillation). The ocean responds to these variations by slowly integrating in depth the upper heat flux changes, thus producing a delayed influence on ocean heat content (OHC) that can later impact low frequency SST (sea surface temperature) variability through reemergence processes. In this study, both the externally and internally driven variations of the OHC during the last millennium are investigated using a set of fully coupled simulations with the ECHO-G (coupled climate model ECHAMA4 and ocean model HOPE-G) atmosphere-ocean general circulation model (AOGCM). When compared to observations for the last 55 yr, the model tends to overestimate the global trends and underestimate the decadal OHC variability. Extending the analysis back to the last one thousand years, the main impact of the radiative forcing is an OHC increase at high latitudes, explained to some extent by a reduction in cloud cover and the subsequent increase of short-wave radiation at the surface. This OHC response is dominated by the effect of volcanism in the preindustrial era, and by the fast increase of GHGs during the last 150 yr. Likewise, salient impacts from internal climate variability are observed at regional scales. For instance, upper temperature in the equatorial Pacific is controlled by ENSO (El Nino Southern Oscillation) variability from interannual to multidecadal timescales. Also, both the Pacific Decadal Oscillation (PDO) and the Atlantic Multidecadal Oscillation (AMO) modulate intermittently the interdecadal OHC variability in the North Pacific and Mid Atlantic, respectively. The NAO, through its influence on North Atlantic surface heat fluxes and convection, also plays an important role on the OHC at multiple timescales, leading first to a cooling in the Labrador and Irminger seas, and later on to a North Atlantic warming, associated with a delayed impact on the AMO.
Resumo:
Ultrathin alumina monolayers grafted onto an ordered mesoporous SBA-15 silica framework afford a composite catalyst support with unique structural properties and surface chemistry. Palladium nanoparticles deposited onto Al-SBA-15 via wet impregnation exhibit the high dispersion and surface oxidation characteristic of pure aluminas, in conjunction with the high active site densities characteristic of thermally stable, high-area mesoporous silicas. This combination confers significant rate enhancements in the aerobic selective oxidation (selox) of cinnamyl alcohol over Pd/Al-SBA-15 compared to mesoporous alumina or silica supports. Operando, liquid-phase XAS highlights the interplay between dissolved oxygen and the oxidation state of palladium nanoparticles dispersed over Al-SBA-15 towards on-stream reduction: ambient pressures of flowing oxygen are sufficient to hinder palladium oxide reduction to metal, enabling a high selox activity to be maintained, whereas rapid PdO reduction and concomitant catalyst deactivation occurs under static oxygen. Selectivity to the desired cinnamaldehyde product mirrors these trends in activity, with flowing oxygen minimising CO cleavage of the cinnamyl alcohol reactant to trans-β-methylstyrene, and of cinnamaldehyde decarbonylation to styrene. © 2013 Elsevier B.V.
Resumo:
Highly ordered mesoporous alumina was prepared via evaporation induced self assembly and was impregnated to afford a family of Pd/meso-Al2O3 catalysts for the aerobic selective oxidation (selox) of allylic alcohols under mild reaction conditions. CO chemisorption and XPS identify the presence of highly dispersed (0.9–2 nm) nanoparticles comprising heavily oxidised PdO surfaces, evidencing a strong palladium-alumina interaction. Surface PdO is confirmed as the catalytically active phase responsible for allylic alcohol selox, with initial rates for Pd/meso-Al2O3 far exceeding those achievable for palladium over either amorphous alumina or mesoporous silica supports. Pd/meso-Al2O3 is exceptionally active for the atom efficient selox of diverse allylic alcohols, with activity inversely proportional to alcohol mass.
Resumo:
The selective conversion of alcohols to their carbonyl derivatives is a critical step towards a sustainable chemical industry. Heterogeneous Pd catalysts represent some of the most active systems known, even so further studies into the active species and role of support are required. Through controlling support mesostructure, using non-interconnected SBA-15 and interlinked SBA-16 and KIT-6, we have evaluated the role of pore architecture on supported Pd nanoparticles and their subsequent activity for liquid phase aerobic allylic alcohol selective oxidation.[1,2] These synthesised silica supports exhibit high surface areas (>800 m2g-1), and similar mesopore diameters (3.5 to 5 nm), but differ in their pore connectivity and arrangement; p6mm (SBA-15), I3mm (SBA-16) and I3ad (KIT-6). When evaluated alongside commercial non-mesoporous silica (200 m2 g-1) they promote enhanced Pd dispersion with interpenetrating assemblies providing further elevation. Macropore introduction into SBA-15, producing a hierarchical macro-mesoporous silica (MM-SBA-15), allows control over mesopore length and accessibility which escalates Pd distribution to levels akin to KIT-6 and SBA-16. Controlling dispersion, and likewise nanoparticle size, is thus facilitated through the choice of support and additionally Pd loading, with cluster sizes spanning 3.2 to 0.8 nm. X-ray spectroscopies indicate nanoparticles are PdO terminated with the oxide content a function of dispersion. Kinetic studies allude to surface PdO being the active site responsible, with a constant TOF observed, independent of loading and support. This confirms activity is governed by PdO density, whilst also overruling internal mass diffusion constraints. MM-SBA-15 facilitates superior activity and TOFs for long chain acyclic terpene alcohols due to reduced internal mass transport constraints.
Resumo:
The aerobic selective oxidation (selox) of alcohols represents an environmentally benign and atom efficient chemical valorisation route to commercially important allylic aldehydes, such as crotonaldehyde and cinnamaldehyde, which find application in pesticides, fragrances and food additives. Palladium nanoparticles are highly active and selective heterogeneous catalysts for such oxidative dehydrogenations, permitting the use of air (or dioxygen) as a green oxidant in place of stoichiometric chromate permanganate saltsor H2O2. Here we discuss how time-resolved, in-situ X-ray spectroscopies (XAS and XPS) reveal dynamic restructuring of dispersed Pd nanoparticles and Pd single-crystals in response to changing reaction environments, and thereby identify surface PdO as the active species responsible for palladium catalysed crotyl alcohol selox (Figure 1); on-stream reduction to palladium metal under oxygen-poor regimes thus appears the primary cause of catalyst deactivation. This insight has guided the subsequent application of surfactant-templating and inorganic nanocrystal methodologies to optimize the density of desired active PdO sites for the selective oxidation of natural products such as sesquiterpenoids.
Resumo:
The utility of a hierarchically ordered nanoporous SBA-15 architecture, comprising 270 nm macropores and 5 nm mesopores (MM-SBA-15), for the catalytic aerobic selective oxidation of sterically challenging allylic alcohols is shown. Detailed bulk and surface characterization reveals that incorporation of complementary macropores into mesoporous SBA-15 enhances the dispersion of sub 2 nm Pd nanoparticles and thus their degree of surface oxidation. Kinetic profiling reveals a relationship between nanoparticle dispersion and oxidation rate, identifying surface PdO as the catalytically active phase. Hierarchical nanoporous Pd/MM-SBA-15 outperforms mesoporous analogues in allylic alcohol selective oxidation by (i) stabilizing PdO nanoparticles and (ii) dramatically improving in-pore diffusion and access to active sites by sesquiterpenoid substrates such as farnesol and phytol. © 2013 American Chemical Society.
Resumo:
Here, we report on the first application of high-pressure XPS (HP-XPS) to the surface catalyzed selective oxidation of a hydrocarbon over palladium, wherein the reactivity of metal and oxide surfaces in directing the oxidative dehydrogenation of crotyl alcohol (CrOH) to crotonaldehyde (CrHCO) is evaluated. Crotonaldehyde formation is disfavored over Pd(111) under all reaction conditions, with only crotyl alcohol decomposition observed. In contrast, 2D Pd5O4 and 3D PdO overlayers are able to selectively oxidize crotyl alcohol (1 mTorr) to crotonaldehyde in the presence of co-fed oxygen (140 mTorr) at temperatures as low as 40 °C. However, 2D Pd5O4 ultrathin films are unstable toward reduction by the alcohol at ambient temperature, whereas the 3D PdO oxide is able to sustain catalytic crotonaldehyde production even up to 150 °C. Co-fed oxygen is essential to stabilize palladium surface oxides toward in situ reduction by crotyl alcohol, with stability increasing with oxide film dimensionality.
Resumo:
Cu/CeO2, Pd/CeO2, and CuPd/CeO2 catalysts were prepared and their reduction followed by in-situ XPS in order to explore promoter and support interactions in a bimetallic CuPd/CeO2 catalyst effective for the oxygen-assisted water-gas-shift (OWGS) reaction. Mutual interactions between Cu, Pd, and CeO2 components all affect the reduction process. Addition of only 1 wt% Pd to 30 wt% Cu/CeO2 greatly enhances the reducibility of both dispersed CuO and ceria support. In-vacuo reduction (inside XPS chamber) up to 400 °C results in a continuous growth of metallic copper and Ce3+ surface species, although higher temperatures results in support reoxidation. Supported copper in turn destabilizes metallic palladium metal with respect to PdO, this mutual perturbation indicating a strong intimate interaction between the Cu–Pd components. Despite its lower intrinsic reactivity towards OWGS, palladium addition at only 1 wt% loading significantly improved CO conversion in OWGS reaction over a monometallic 30 wt% Cu/CeO2 catalysts, possibly by helping to maintain Cu in a reduced state during reaction.
Resumo:
2010 Mathematics Subject Classification: 35L10, 35L90.
Resumo:
Precipitation and temperature in Florida responds to climate teleconnections from both the Pacific and Atlantic regions. In this region south of Lake Okeechobee, encompassing NWS Climate Divisions 5, 6, and 7, modern movement of surface waters are managed by the South Florida Water Management District and the US Army Corps of Engineers for flood control, water supply, and Everglades restoration within the constraints of the climatic variability of precipitation and evaporation. Despite relatively narrow, low-relief, but multi-purposed land separating the Atlantic Ocean from the Gulf of Mexico, South Florida has patterns of precipitation and temperature that vary substantially on spatial scales of 101–102 km. Here we explore statistically significant linkages to precipitation and temperature that vary seasonally and over small spatial scales with El Niño-Southern Oscillation (ENSO), the Atlantic Multidecadal Oscillation (AMO), and the Pacific Decadal Oscillation (PDO). Over the period from 1952 to 2005, ENSO teleconnections exhibited the strongest influence on seasonal precipitation. The Multivariate ENSO Index was positively correlated with winter (dry season) precipitation and explained up to 34 % of dry season precipitation variability along the southwest Florida coast. The AMO was the most influential of these teleconnections during the summer (wet season), with significant positive correlations to South Florida precipitation. These relationships with modern climate parameters have implications for paleoclimatological and paleoecological reconstructions, and future climate predictions from the Greater Everglades system.
Resumo:
Shallow marine ecosystems are experiencing significant environmental alterations as a result of changing climate and increasing human activities along coasts. Intensive urbanization of the southeast Florida coast and intensification of climate change over the last few centuries changed the character of coastal ecosystems in the semi-enclosed Biscayne Bay, Florida. In order to develop management policies for the Bay, it is vital to obtain reliable scientific evidence of past ecological conditions. The long-term records of subfossil diatoms obtained from No Name Bank and Featherbed Bank in the Central Biscayne Bay, and from the Card Sound Bank in the neighboring Card Sound, were used to study the magnitude of the environmental change caused by climate variability and water management over the last ~ 600 yr. Analyses of these records revealed that the major shifts in the diatom assemblage structures at No Name Bank occurred in 1956, at Featherbed Bank in 1966, and at Card Sound Bank in 1957. Smaller magnitude shifts were also recorded at Featherbed Bank in 1893, 1942, 1974 and 1983. Most of these changes coincided with severe drought periods that developed during the cold phases of El Niño Southern Oscillation (ENSO), Atlantic Multidecadal Oscillation (AMO) and Pacific Decadal Oscillation (PDO), or when AMO was in warm phase and PDO was in the cold phase. Only the 1983 change coincided with an unusually wet period that developed during the warm phases of ENSO and PDO. Quantitative reconstructions of salinity using the weighted averaging partial least squares (WA-PLS) diatom-based salinity model revealed a gradual increase in salinity at the three coring locations over the last ~ 600 yr, which was primarily caused by continuously rising sea level and in the last several decades also by the reduction of the amount of freshwater inflow from the mainland. Concentration of sediment total nitrogen (TN), total phosphorus (TP) and total organic carbon (TOC) increased in the second half of the 20th century, which coincided with the construction of canals, landfills, marinas and water treatment plants along the western margin of Biscayne Bay. Increased magnitude and rate of the diatom assemblage restructuring in the mid- and late-1900s, suggest that large environmental changes are occurring more rapidly now than in the past.
Resumo:
Shallow marine ecosystems are experiencing significant environmental alterations as a result of changing climate and increasing human activities along coasts. Intensive urbanization of the southeast Florida coast and intensification of climate change over the last few centuries changed the character of coastal ecosystems in the semi-enclosed Biscayne Bay, Florida. In order to develop management policies for the Bay, it is vital to obtain reliable scientific evidence of past ecological conditions. The long-term records of subfossil diatoms obtained from No Name Bank and Featherbed Bank in the Central Biscayne Bay, and from the Card Sound Bank in the neighboring Card Sound, were used to study the magnitude of the environmental change caused by climate variability and water management over the last ~ 600 yr. Analyses of these records revealed that the major shifts in the diatom assemblage structures at No Name Bank occurred in 1956, at Featherbed Bank in 1966, and at Card Sound Bank in 1957. Smaller magnitude shifts were also recorded at Featherbed Bank in 1893, 1942, 1974 and 1983. Most of these changes coincided with severe drought periods that developed during the cold phases of El Niño Southern Oscillation (ENSO), Atlantic Multidecadal Oscillation (AMO) and Pacific Decadal Oscillation (PDO), or when AMO was in warm phase and PDO was in the cold phase. Only the 1983 change coincided with an unusually wet period that developed during the warm phases of ENSO and PDO. Quantitative reconstructions of salinity using the weighted averaging partial least squares (WA-PLS) diatom-based salinity model revealed a gradual increase in salinity at the three coring locations over the last ~ 600 yr, which was primarily caused by continuously rising sea level and in the last several decades also by the reduction of the amount of freshwater inflow from the mainland. Concentration of sediment total nitrogen (TN), total phosphorus (TP) and total organic carbon (TOC) increased in the second half of the 20th century, which coincided with the construction of canals, landfills, marinas and water treatment plants along the western margin of Biscayne Bay. Increased magnitude and rate of the diatom assemblage restructuring in the mid- and late-1900s, suggest that large environmental changes are occurring more rapidly now than in the past.
Resumo:
Acknowledgments Support for this work came from the SAFARI consortium which was funded by Bayern Gas, ConocoPhillips, Dana Petroleum, Dong Energy, Eni Norge, GDF Suez, Idemitsu, Lundin, Noreco, OMV, Repsol, Rocksource, RWE, Statoil, Suncor, Total, PDO, VNG and the Norwegian Petroleum Directorate (NPD). This manuscript has benefited from discussion with Bruce Ainsworth, Rachel Nanson and Christian Haug Eide. Boyan Vakarelov and Richard Davis Jr. are thanked for their constructive reviews and valuable comments that helped to improve the manuscript.
Resumo:
The Indian winter monsoon (IWM) is a key component of the seasonally changing monsoon system that affects the densely populated regions of South Asia. Cold winds originating in high northern latitudes provide a link of continental-scale Northern Hemisphere climate to the tropics. Western Disturbances (WD) associated with the IWM play a critical role for the climate and hydrology in northern India and the western Himalaya region. It is vital to understand the mechanisms and teleconnections that influence IWM variability to better predict changes in future climate. Here we present a study of regionally calibrated winter (January) temperatures and according IWM intensities, based on a planktic foraminiferal record with biennial (2.55 years) resolution. Over the last ~250 years, IWM intensities gradually weakened, based on the long-term trend of reconstructed January temperatures. Furthermore, the results indicate that IWM is connected on interannual- to decadal time scales to climate variability of the tropical and extratropical Pacific, via El Niño Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO). However, our findings suggest that this relationship appeared to begin to decouple since the beginning of the 20th century. Cross-spectral analysis revealed that several distinct decadal-scale phases of colder climate and accordingly more intense winter monsoon centered at the years ~1800, ~1890 and ~1930 can be linked to changes of the North Atlantic Oscillation (NAO).
Resumo:
A actividade vitivinícola possui um conjunto diverso de características presentes no solo, território e comunidade que fazem parte do património cultural de uma determinada região. Quando a tradição se traduz num conceito como terroir que é formado por características territoriais, sociais e culturais de uma região rural, o vinho apresenta uma “assinatura” que se escreve “naturalmente” no paladar regionalmente identificado. Os vinhos da Região de Nemea, na Grécia e de Basto (Região dos Vinhos Verdes) em Portugal, estão ambos sob a proteção dos regulamentos das Denominações de Origem. No entanto, apesar de ambos serem regulados por sistemas institucionais de certificação e controlo de qualidade, afigura-se a necessidade de questionar se o património cultural e a identidade territorial específica, “impressa” em ambos os terroirs, pode ser protegida num sentido mais abrangente do que apenas origem e qualidade. Em Nemea, a discussão entre os produtores diz respeito ao estabelecimento de sub-zonas, isto é incluir na regulação PDO uma diferente categorização territorial com base no terroir. Ou seja, para além de estar presente no rótulo a designação PDO, as garrafas incluirão ainda informação certificada sobre a área específica (dentro do mesmo terroir) onde o vinho foi produzido. A acontecer resultaria em diferentes status de qualidade de acordo com as diferentes aldeias de Nemea onde as vinhas estão localizadas. O que teria possíveis impactos no valor das propriedades e no uso dos solos. Para além disso, a não participação da Cooperativa de Nemea na SON (a associação local de produtores de vinho) e como tal na discussão principal sobre as mudanças e os desafios sobre o terroir de Nemea constitui um problema no sector vitivinícola de Nemea. Em primeiro lugar estabelece uma relação de não-comunicação entre os dois mais importantes agentes desse sector – as companhias vinícolas e a Cooperativa. Em segundo lugar porque constituiu uma possibilidade real, não só para os viticultores ficarem arredados dessa discussão, como também (porque não representados pela cooperativa) ficar impossibilitado um consenso sobre as mudanças discutidas. Isto poderá criar um ‘clima’ de desconfiança levando a discussão para ‘arenas’ deslocalizadas e como tal para decisões ‘desterritorializadas’ Em Basto, há vários produtores que começaram a vender a sua produção para distribuidoras localizadas externamente à sub-região de Basto, mas dentro da Região dos Vinhos Verdes, uma vez que essas companhias tem um melhor estatuto nacional e internacional e uma melhor rede de exportações. Isto está ainda relacionado com uma competição por uma melhor rede de contactos e status mais forte, tornando as discussões sobre estratégias comuns para o desenvolvimento rural e regional de Basto mais difícil de acontecer (sobre isto a palavra impossível foi constantemente usada durante as entrevistas com os produtores de vinho). A relação predominante entre produtores é caracterizada por relações individualistas. Contudo foi observado que essas posições são ainda caracterizadas por uma desconfiança no interior da rede interprofissional local: conflitos para conseguir os mesmos potenciais clientes; comprar uvas a viticultores com melhor rácio qualidade/preço; estratégias individuais para conseguir um melhor status político na relação com a Comissão dos Vinhos Verdes. Para além disso a inexistência de uma activa intermediação institucional (autoridades municipais e a Comissão de Vinho Verde), a inexistência entre os produtores de Basto de uma associação ou mesmo a inexistência de uma cooperativa local tem levado a região de Basto a uma posição de subpromoção nas estratégias de promoção do Vinho Verde em comparação com outras sub-regiões. É também evidente pelos resultados que as mudanças no sector vitivinícolas na região de Basto têm sido estimuladas de fora da região (em resposta também às necessidades dos mercados internacionais) e raramente de dentro – mais uma vez, ‘arenas’ não localizadas e como tal decisões desterritorializadas. Nesse sentido, toda essa discussão e planeamento estratégico, terão um papel vital na preservação da identidade localizada do terroir perante os riscos de descaracterização e desterritorialização. Em suma, para ambos os casos, um dos maiores desafios parece ser como preservar o terroir vitivinícola e como tal o seu carácter e identidade local, quando a rede interprofissional em ambas as regiões se caracteriza, tanto por relações não-consensuais em Nemea como pelo modus operandi de isolamento sem comunicação em Basto. Como tal há uma necessidade de envolvimento entre os diversos agentes e as autoridades locais no sentido de uma rede localizada de governança. Assim sendo, em ambas as regiões, a existência dessa rede é essencial para prevenir os efeitos negativos na identidade do produto e na sua produção. Uma estratégia de planeamento integrado para o sector será vital para preservar essa identidade, prevenindo a sua desterritorialização através de uma restruturação do conhecimento tradicional em simultâneo com a democratização do acesso ao conhecimento das técnicas modernas de produção vitivinícola.