982 resultados para PATHOGEN RESISTANCE


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Quambalaria shoot blight, caused by the fungus Quambalaria pitereka, is a serious disease affecting the expanding eucalypt plantation estate in subtropical and tropical eastern Australia. Trees that are severely infected are often multi-stemmed and stunted and infection of young trees may give rise to poor form in mature trees. A spotted gum clonal trial provided the opportunity to investigate the impact of the disease on tree growth and factors influencing tree architecture (tree form), which affects wood quality. We measured the effect that Q. pitereka infection during plantation establishment (up to 6 months old) has on growth and tree architecture and productivity to age 3 years. Our results show that the pathogen has a significant impact on trees at plantation establishment, which results in a negative impact on wood quality, potentially reducing merchantable value at final harvest. Tree growth and form was significantly improved where germplasm with low susceptibility to Q. pitereka infection was used.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In complement activation, Factor H (FH) and C4b-binding protein (C4bp) are the key regulators that prevent the complement cascade from attacking host tissues. Some bacteria may bind and deposit these regulators on their own surfaces and thus provide themselves with an efficient means to avoid complement activation. In consequence, bacteria resist complement-mediated lysis and opsonin-dependent phagocytosis. This study has demonstrated that Y. enterocolitica, similar to many other pathogens, recruits both FH and C4bp to its surface to ensure protection against the complement-mediated killing. YadA and Ail, the most crucial serum resistance factors of Y.enterocolitica, mediate the binding of FH and C4bp. FH - YadA interaction involves multiple higher structural motifs on the YadA stalk and the short consensus repeats (SCRs) of the entire polypeptide chain of FH. The Ail binding site on FH has been located to SCRs 6 and 7. The binding site for FH on Ail, however, remains undetermined. Both YadA- and Ail-bound regulators display full cofactor activity for FI-mediated cleavage of C3b/C4b. FH/C4bp-binding characteristics do, however, differ between YadA and Ail. In addition, Ail captures the regulators only in the absence of blocking lipopolysaccharide O-antigen and outer core, whereas YadA binds FH/C4bp independent of the presence of other surface factors Independent of mode of binding, however, YadA and Ail provide Y. enterocolitica a means to avoid complement-mediated lysis, enhancing chances for the bacteria to survive in the host during various phases of infection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pre-emptive breeding for host disease resistance is an effective strategy for combating and managing devastating incursions of plant pathogens. Comprehensive, long-term studies have revealed that virulence to the R (2) sunflower (Helianthus annuus L.) rust resistance gene in the line MC29 does not exist in the Australian rust (Puccinia helianthi) population. We report in this study the identification of molecular markers linked to this gene. The three simple sequence repeat (SSR) markers ORS795, ORS882, and ORS938 were linked in coupling to the gene, while the SSR marker ORS333 was linked in repulsion. Reliable selection for homozygous-resistant individuals was efficient when the three markers, ORS795, ORS882, and ORS333, were used in combination. Phenotyping for this resistance gene is not possible in Australia without introducing a quarantinable race of the pathogen. Therefore, the availability of reliable and heritable DNA-based markers will enable the efficient deployment of this gene, permitting a more effective strategy for generating sustainable commercial cultivars containing this rust resistance gene.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In Finland, barley, Hordeum vulgare L., covers 50 % of the total acreage devoted to cereal cultivation. The most common disease of barley in Finland is net blotch, a foliar disease caused by the ascomycete Pyrenophora teres Drechsler. Disease resistance based on plant genes is an environmentally friendly and economical way to manage plant diseases caused by biotic stresses. Development of a disease resistance breeding programme is dependent on knowledge of the pathogen. In addition to information on the epidemiology and virulence of a pathogen, knowledge on how the pathogen evolves and the nature of the risks that might arise in the future are essential issues that need to be taken into account to achieve the final breeding aims. The main objectives of this study were to establish reliable and efficient testing methods for Pyrenophora teres f. teres virulence screening, and to understand the role of virulence of P. teres f. teres in Finland from a disease resistance breeding point of view. The virulence of P. teres was studied by testing 239 Finnish P. teres f. teres isolates collected between 1994 2007 originating from 19 locations, and 200 P. teres progeny isolates originating from artificially produced P. teres matings. According to the results of this study, screening for P. teres f. teres isolates on barley seedlings under greenhouse conditions is a feasible and cost efficient method to describe the virulence spectrum of the pathogen. Inoculum concentration and the seedling leaf used to gauge virulence had significant effects. Barley grain size, morphological traits of P. teres isolates, spore production and growth rate on agar did not affect the expression of virulence. A common barley differential set to characterize the P. teres virulence was developed and is recommended to be used globally. The virulence spectrum of Finnish P. teres f. teres isolates collected in 1994-2007 was constant both within and between the years. The results indicated differences in the pathogen s aggressiveness and in barley genotypes resistance. However, differences in virulence were rarely significant. Unlike in laboratory conditions, no indications of changes in virulence caused by the sexual reproduction have been observed in Finnish barley fields. In Finland, durable net blotch resistance has been achieved by introducing resistance from other barley varieties using traditional crossing methods, including wide crossing, and testing the breeding material at early generations at several sites under natural infection pressure. Novel resistance is available, which is recommended to minimize the risk of selection of virulent isolates and breakdown of currently deployed resistance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The exotic rust pathogen Puccinia psidii is now widespread along the east coast of Australia from temperate Victoria to tropical far north Queensland, with a current host range exceeding 200 species from 37 myrtaceous genera. To determine the threat P. psidii poses to plantation and native eucalypts, artificial inoculation was used to screen germplasm of spotted gum (Corymbia spp.) for resistance to the biotype of P. psidii that has become established in Australia. The objective was to characterize resistance to P. psidii within the Corymbia species complex so that management strategies for the deployment of germplasm from existing breeding programmes of these spotted gum species could be developed. Symptom development initiated 7 days after inoculation, with resistant and susceptible seedlings identified within all species, provenances and families. Inter- and intraspecific variability in rust resistance was observed among spotted gum species. There was no apparent relationship between climatic conditions at the provenance origin and disease resistance. The heritability estimates for all assessments are moderate to high and indicate a significant level of additive genetic variance for rust resistance within the populations. The results of this study clearly identify potential to select for resistance at the family level within the tested populations. While the potential for P. psidii to detrimentally impact upon Corymbia in the nursery and in young plantations was demonstrated, estimations of the heritability of resistance suggest that efforts to enhance this trait through breeding have reasonable prospects for success.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fusarium wilt of strawberry, incited by Fusarium oxysporum f. sp. fragariae (Fof), is a major disease of the cultivated strawberry (Fragaria xananassa) worldwide. An increase in disease outbreaks of the pathogen in Western Australia and Queensland plus the search for alternative disease management strategies place emphasis on the development of resistant cultivars. In response, a partial incomplete diallel cross involving four parents was performed for use in glasshouse resistance screenings. The resulting progeny were evaluated for their susceptibility to Fof. Best-performing progeny and suitability of progenies as parents were determined using data from disease severity ratings and analyzed using a linear mixed model incorporating a pedigree to produce best linear unbiased predictions of breeding values. Variation in disease response, ranging from highly susceptible to resistant, indicates a quantitative effect. The estimate of the narrow-sense heritability was 0.49 +/- 0.04 (SE), suggesting the population should be responsive to phenotypic recurrent selection. Several progeny genotypes have predicted breeding values higher than any of the parents. Knowledge of Fof resistance derived from this study can help select best parents for future crosses for the development of new strawberry cultivars with Fof resistance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Six tetraploid hybrids from Fundación Hondureña de Investigación Agrícola (FHIA) were evaluated in Australia over a five year period. They included three AAAA hybrids (FHIA-02, FHIA-17 and FHIA-23) and three AAAB hybrids (FHIA-01, FHIA-18 and SH-3640.10) and they were compared with industry standards, ‘Williams’ (AAA, Cavendish subgroup) and ‘Lady Finger’ (AAB, Pome subgroup). They were screened for their resistance to Fusarium wilt race 1 and subtropical race 4 caused by the pathogen Fusarium oxysporum f.sp. cubense and they were also grown for several cycles on farms not infested with Fusarium wilt to record their agronomic characteristics. The AAAB hybrids, all derived from female parent ‘Prata Anã’ (AAB, Pome subgroup) were the most resistant to both races of Fusarium wilt and were very productive in the subtropics. They were significantly more productive than ‘Lady Finger’, which was susceptible to both races of Fusarium wilt. The AAAA hybrids, with the exception of FHIA-02 which was very susceptible to Fusarium wilt and displayed the poorest agronomic traits of the six hybrids, produced bunch weights as good as Cavendish but were significantly slower to cycle. FHIA-17 and FHIA-23, both derived from the female parent ‘Highgate’ (AAA, Gros Michel subgroup), were also significantly more resistant to Fusarium wilt than ‘Gros Michel’, while FHIA-17 demonstrated a level of resistance similar to ‘Williams’ and FHIA-23 was intermediate between ‘Lady Finger’ and ‘Williams’

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Postharvest diseases remain a significant constraint to the transport, storage and marketing of mangoes. The two main ones are anthracnose and stem end rot. Anthracnose caused by Colletotrichum gloeosporioides is the more wide-spread of the two. Varieties within Mangifera indica are known to vary in their level of reactions to anthracnose; however, the best tolerance in current commercial cultivars is not sufficient to eliminate the need for pre- and postharvest fungicides treatments. A screening program was initiated in mango accessions in the Australian National Mango Genebank to look for any significant resistance to C. gloeosporioides in fruit as they ripened. Screening was conducted by rating reactions to natural infection of anthracnose and reactions to artificially inoculating fruit with virulent isolates of C. gloeosporioides. A range of reactions to the pathogen were identified, with strong resistance found in one accession of the species M. laurina. This accession was used as the pollen parent in a controlled crossing program with a M. indica hybrid from the Australian Mango Breeding Program (AMBP). Sixty successful hybrids between the species have been generated. The hybrid population will be screened for resistance to anthracnose and used for gene discovery investigations to identify markers for anthracnose resistance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Key message: QTLidentified for seedling and adult plant crown rot resistance in four partially resistant hexaploid wheat sources. PCR-based markers identified for use in marker-assisted selection. Abstract: Crown rot, caused by Fusarium pseudograminearum, is an important disease of wheat in many wheat-growing regions globally. Complete resistance to infection by F. pseudograminearum has not been observed in a wheat host, but germplasm with partial resistance to this pathogen has been identified. The partially resistant wheat hexaploid germplasm sources 2-49, Sunco, IRN497 and CPI133817 were investigated in both seedling and adult plant field trials to identify markers associated with the resistance which could be used in marker-assisted selection programs. Thirteen different quantitative trait loci (QTL) conditioning crown rot resistance were identified in the four different sources. Some QTL were only observed in seedling trials whereas others appeared to be adult plant specific. For example while the QTL on chromosomes 1AS, 1BS, and 4BS contributed by 2-49 and on 2BS contributed by Sunco were detected in both seedling and field trials, the QTL on 1DL present in 2-49 and the QTL on 3BL in IRN497 were only detected in seedling trials. Genetic correlations between field trials of the same population were strong, as were correlations between seedling trials of the same population. Low to moderate correlations were observed between seedling and field trials. Flanking markers, most of which are less than 10 cM apart, have now been identified for each of the regions associated with crown rot resistance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study aimed to determine if pathotypic diversity of the sorghum rust pathogen, P. purpurea, exists in eastern Australia. A differential set of 10 Sorghum bicolor genotypes was used to identify four putative pathotypes from the 28 P. purpurea isolates that were tested. Pathotypes 1 and 3 were the most common, together comprising 85.7 % of the isolates tested, while pathotype 2 comprised 10.7 % of isolates, and pathotype 4 the remainder. Based on the limited number of isolates that were tested, there was evidence of geographic specialization amongst the pathotypes, with pathotype 1 not being found in north Queensland. This work has provided conclusive evidence that pathotypes of P. purpurea exist in the sorghum growing regions of Australia and has resulted in the development of a protocol for identifying pathotypes and screening breeding and experimental lines for resistance to these pathotypes. However, further investigations on the pathotypic diversity of P. purpurea and on the temporal and geographic distribution of these four as well as any additional undiscovered pathotypes are needed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rapid screening tests and an appreciation of the simple genetic control of Alternaria brown spot (ABS) susceptibility have existed for many years, and yet the application of this knowledge to commercial-scale breeding programs has been limited. Detached leaf assays were first demonstrated more than 40 years ago and reliable data suggesting a single gene determining susceptibility has been emerging for at least 20 years. However it is only recently that the requirement for genetic resistance in new hybrids has become a priority, following increased disease prevalence in Australian mandarin production areas previously considered too dry for the pathogen. Almost all of the high-fruit-quality parents developed so far by the Queensland-based breeding program are susceptible to ABS necessitating the screening of their progeny to avoid commercialisation of susceptible hybrids. This is done effectively and efficiently by spraying 3-6 month old hybrid seedlings with a spore suspension derived from a toxin-producing field isolate of Alternaria alternate, then incubating these seedlings in a cool room at 25°C and high humidity for 5 days. Susceptible seedlings show clear disease symptoms and are discarded. Analysis of observed and expected segregation ratios loosely support the hypothesis for a single dominant gene for susceptibility, but do not rule out the possibility of alternative genetic models. After implementing the routine screening for ABS resistance for three seasons we now have more than 20,000 hybrids growing in field progeny blocks that have been screened for resistance to the ABS disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pratylenchus thornei is a major pathogen of wheat in Australia. Two glasshouse experiments with four wheat cultivars that had different final populations (Pf) of P. thornei in the field were used to optimise conditions for assessing resistance. With different initial populations (Pi) ranging up to 5250 P. thornei/kg soil, Pf of P. thornei increased to 16 weeks after sowing, and then decreased at 20 weeks in some cultivar x Pi combinations. The population dynamics of P. thornei up to 16 weeks were best described by a modified exponential equation P f (t) = aP i e kt where P f (t) is the final population density at time t, P i is the initial population density, a is the proportion of P i that initiates population development, and k is the intrinsic rate of increase of the population. The cultivar GS50a had very low k values at Pi of 5250 and 1050 indicating its resistance, Suneca and Potam had high k values indicating susceptibility, whereas intolerant Gatcher had a low value at the higher Pi and a high value at the lower Pi. Nitrate fertiliser increased plant growth and Pf values of susceptible cultivars, but in unplanted soil it decreased Pf. Nematicide (aldicarb 5 mg/kg soil) killed P. thornei more effectively in planted than in unplanted soil and increased plant growth particularly in the presence of N fertiliser. In both experiments, the wheat cultivars Suneca and Potam were more susceptible than the cultivar GS50a reflecting field results. The method chosen to discriminate wheat cultivars was to assess Pf after growth for 16 weeks in soil with Pi ~1050–5250 P. thornei/kg soil and fertilised with 200 mg NO3–N/kg soil.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This project proposes to implement resistance gene pyramiding strategies through close collaboration with Pacific Seeds. These strategies have been developed by Department of Primary Industries and Fisheries (DPI&F) researchers in two previous GRDC projects, DAQ356 and DAQ537. The gene pyramids will be incorporated into elite breeding material using techniques and technologies developed by DPI&F. These include the use of DNA markers. If successful, a range of elite lines/commercial hybrids containing strategic resistance gene pyramids will be available to growers. These lines will provide the industry with a directed strategy to manage the sunflower rust pathogen and reduce the risk of outbreaks of the disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Erwinia carotovora subsp. carotovora is a bacterial phytopathogen that causes soft rot in various agronomically important crop plants. A genetically specified resistance to E. carotovora has not been defined, and plant resistance to this pathogen is established through nonspecific activation of basal defense responses. This, together with the broad host range, makes this pathogen a good model for studying the activation of plant defenses. Production and secretion of plant cell wall-degrading enzymes (PCWDE) are central to the virulence of E. carotovora. It also possesses the type III secretion system (TTSS) utilized by many Gram-negative bacteria to secrete virulence- promoting effector proteins to plant cells. This study elucidated the role of E. carotovora HrpN (HrpNEcc), an effector protein secreted through TTSS, and the contribution of this protein in the virulence of E. carotovora. Treatment of plants with HrpNEcc was demonstrated to induce a hypersensitive response (HR) as well as resistance to E. carotovora. Resistance induced by HrpNEcc required both salicylic acid (SA)- and jasmonate/ethylene (JA/ET)-dependent defense signaling in Arabidopsis. Simultaneous treatment of Arabidopsis with HrpNEcc and PCWDE polygalacturonase PehA elicited accelerated and enhanced induction of defense genes but also increased production of superoxide and lesion formation. This demonstrates mutual amplification of defense signaling by these two virulence factors of E. carotovora. Identification of genes that are rapidly induced in response to a pathogen can provide novel information about the early events occurring in the plant defense response. CHLOROPHYLLASE 1 (AtCLH1) and EARLY RESPONSIVE TO DEHYDRATION 15 (ERD15) are both rapidly triggered by E. carotovora in Arabidopsis. Characterization of AtCLH1 encoding chlorophyll-degrading enzyme chlorophyllase indicated that it might have a role in chlorophyll degradation during plant tissue damage. Silencing of this gene resulted in increased accumulation of reactive oxygen species (ROS) in response to pathogen infection in a light-dependent manner. This led to enhanced SA-dependent defenses and resistance to E. carotovora. Moreover, crosstalk between different defense signaling pathways was observed; JA-dependent defenses and resistance to fungal pathogen Alternaria brassicicola were impaired, indicating antagonism between SA- and JA-dependent signaling. Characterization of ERD15 suggested that it is a novel, negative regulator of abscisic acid (ABA) signaling in Arabidopsis. Overexpression of ERD15 resulted in insensitivity to ABA and reduced tolerance of the plants to dehydration stress. However, simultaneously, the resistance of the plants to E. carotovora was enhanced. Silencing of ERD15 improved freezing and drought tolerance of transgenic plants. This, together with the reducing effect of ABA on seed germination, indicated hypersensitivity to this phytohormone. ERD15 was hypothesized to act as a capacitor that controls the appropriate activation of ABA responses in Arabidopsis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plants are capable of recognizing phytopathogens through the perception of pathogen-derived molecules or plant cell-wall degradation products due to the activities of pathogen-secreted enzymes. Such elicitor recognition events trigger an array of inducible defense responses involving signal transduction networks and massive transcriptional re-programming. The outcome of a pathogen infection relies on the balance between different signaling pathways, which are integrated by regulatory proteins. This thesis characterized two key regulatory components: a damage control enzyme, chlorophyllase 1 (AtCHL1), and a transcription factor, WRKY70. Their roles in defense signaling were then investigated. The Erwinia-derived elicitors rapidly activated the expression of AtCLH1 and WRKY70 through different signaling pathways. The expression of the AtCHL1 gene was up-regulated by jasmonic acid (JA) but down-regulated by salicylic acid (SA), whereas WRKY70 was activated by SA and repressed by JA. In order to elucidate the functions of AtCLH1 and WRKY70 in plant defense, stable transgenic lines were produced where these genes were overexpressed or silenced. Additionally, independent knockout lines were also characterized. Bacterial and fungal pathogens were then used to assess the contribution of these genes to the Arabidopsis disease resistance. The transcriptional modulation of AtCLH1 by either the constitutive over-expression or RNAi silencing caused alterations in the chlorophyll-to-chlorophyllide ratio, supporting the claim that chlorophyllase 1 has a role in the chlorophyll degradation pathway. Silencing of this gene led to light-dependent over-accumulation of the reactive oxygen species (ROS) in response to infection by Erwinia carotovora subsp. carotovora SCC1. This was followed by an enhanced induction of SA-dependent defense genes and an increased resistance to this pathogen. Interestingly, little effect on the pathogen-induced SA accumulation at the early infection was observed, suggesting that action of ROS might potentiate SA signaling. In contrast, the pathogen-induced JA production was significantly reduced in the RNAi silenced plants. Moreover, JA signaling and resistance to Alternaria brassicicola were impaired. These observations provide support for the argument that the ROS generated in chloroplasts might have a negative impact on JA signaling. The over-expression of WRKY70 resulted in an enhanced resistance to E. carotovora subsp. carotovora SCC1, Pseudomonas syringae pv. tomato DC3000 and Erysiphe cichoracearum UCSC1, whilst an antisense suppression or an insertional inactivation of WRKY70 led to a compromised resistance to E. carotovora subsp. carotovora SCC1 and to E. cichoracearum UCSC1 but not to P. syringae pv. tomato DC3000. Gene expression analysis revealed that WRKY70 activated many known defense-related genes associated with the SAR response but suppressed a subset of the JA-responsive genes. In particular, I was able to show that both the basal and the induced expression of AtCLH1 was enhanced by the antisense silencing or the insertional inactivation of WRKY70, whereas a reduction in AtCLH1 expression was observed in the WRKY70 over-expressors following an MeJA application or an A. brassicicola infection. Moreover, the SA-induced suppression of AtCLH1 was relieved in wrky70 mutants. These results indicate that WRKY70 down-regulates AtCLH1. An epistasis analysis suggested that WRKY70 functions downstream of the NPR1 in an SA-dependent signaling pathway. When challenged with A. brassicicola, WRKY70 over-expressing plants exhibited a compromised disease resistance while wrky70 mutants had the opposite effect. These results confirmed the WRKY70-mediated inhibitory effects on JA signaling. Furthermore, the WRKY70-controlled suppression of A. brassicicola resistance was mainly through an NPR1-dependent mechanism. Taking all the data together, I suggest that the pathogen-responsive transcription factor WRKY70 is a common component in both SA- and JA-dependent pathways and plays a crucial role in the SA-mediated suppression of JA signaling.