933 resultados para PARALLEL COMPUTING
Resumo:
One among the most influential and popular data mining methods is the k-Means algorithm for cluster analysis. Techniques for improving the efficiency of k-Means have been largely explored in two main directions. The amount of computation can be significantly reduced by adopting geometrical constraints and an efficient data structure, notably a multidimensional binary search tree (KD-Tree). These techniques allow to reduce the number of distance computations the algorithm performs at each iteration. A second direction is parallel processing, where data and computation loads are distributed over many processing nodes. However, little work has been done to provide a parallel formulation of the efficient sequential techniques based on KD-Trees. Such approaches are expected to have an irregular distribution of computation load and can suffer from load imbalance. This issue has so far limited the adoption of these efficient k-Means variants in parallel computing environments. In this work, we provide a parallel formulation of the KD-Tree based k-Means algorithm for distributed memory systems and address its load balancing issue. Three solutions have been developed and tested. Two approaches are based on a static partitioning of the data set and a third solution incorporates a dynamic load balancing policy.
Resumo:
How can a bridge be built between autonomic computing approaches and parallel computing system? The work reported in this paper is motivated towards bridging this gap by proposing swarm-array computing, a novel technique to achieve autonomy for distributed parallel computing systems. Among three proposed approaches, the second approach, namely 'Intelligent Agents' is of focus in this paper. The task to be executed on parallel computing cores is considered as a swarm of autonomous agents. A task is carried to a computing core by carrier. agents and can be seamlessly transferred between cores in the event of a pre-dicted failure, thereby achieving self-ware objectives of autonomic computing. The feasibility of the proposed approach is validated on a multi-agent simulator.
Resumo:
The work reported in this paper proposes 'Intelligent Agents', a Swarm-Array computing approach focused to apply autonomic computing concepts to parallel computing systems and build reliable systems for space applications. Swarm-array computing is a robotics a swarm robotics inspired novel computing approach considered as a path to achieve autonomy in parallel computing systems. In the intelligent agent approach, a task to be executed on parallel computing cores is considered as a swarm of autonomous agents. A task is carried to a computing core by carrier agents and can be seamlessly transferred between cores in the event of a predicted failure, thereby achieving self-* objectives of autonomic computing. The approach is validated on a multi-agent simulator.
Resumo:
How can a bridge be built between autonomic computing approaches and parallel computing systems? How can autonomic computing approaches be extended towards building reliable systems? How can existing technologies be merged to provide a solution for self-managing systems? The work reported in this paper aims to answer these questions by proposing Swarm-Array Computing, a novel technique inspired from swarm robotics and built on the foundations of autonomic and parallel computing paradigms. Two approaches based on intelligent cores and intelligent agents are proposed to achieve autonomy in parallel computing systems. The feasibility of the proposed approaches is validated on a multi-agent simulator.
Resumo:
Space applications demand the need for building reliable systems. Autonomic computing defines such reliable systems as self-managing systems. The work reported in this paper combines agent-based and swarm robotic approaches leading to swarm-array computing, a novel technique to achieve self-managing distributed parallel computing systems. Two swarm-array computing approaches based on swarms of computational resources and swarms of tasks are explored. FPGA is considered as the computing system. The feasibility of the two proposed approaches that binds the computing system and the task together is simulated on the SeSAm multi-agent simulator.
Resumo:
Space applications demand the need for building reliable systems. Autonomic computing defines such reliable systems as self-managing systems. The work reported in this paper combines agent-based and swarm robotic approaches leading to swarm-array computing, a novel technique to achieve self-managing distributed parallel computing systems. Two swarm-array computing approaches based on swarms of computational resources and swarms of tasks are explored. FPGA is considered as the computing system. The feasibility of the two proposed approaches that binds the computing system and the task together is simulated on the SeSAm multi-agent simulator.
Resumo:
The Danish Eulerian Model (DEM) is a powerful air pollution model, designed to calculate the concentrations of various dangerous species over a large geographical region (e.g. Europe). It takes into account the main physical and chemical processes between these species, the actual meteorological conditions, emissions, etc.. This is a huge computational task and requires significant resources of storage and CPU time. Parallel computing is essential for the efficient practical use of the model. Some efficient parallel versions of the model were created over the past several years. A suitable parallel version of DEM by using the Message Passing Interface library (AIPI) was implemented on two powerful supercomputers of the EPCC - Edinburgh, available via the HPC-Europa programme for transnational access to research infrastructures in EC: a Sun Fire E15K and an IBM HPCx cluster. Although the implementation is in principal, the same for both supercomputers, few modifications had to be done for successful porting of the code on the IBM HPCx cluster. Performance analysis and parallel optimization was done next. Results from bench marking experiments will be presented in this paper. Another set of experiments was carried out in order to investigate the sensitivity of the model to variation of some chemical rate constants in the chemical submodel. Certain modifications of the code were necessary to be done in accordance with this task. The obtained results will be used for further sensitivity analysis Studies by using Monte Carlo simulation.
Resumo:
The work reported in this paper proposes a novel synergy between parallel computing and swarm robotics to offer a new computing paradigm, 'swarm-array computing' that can harness and apply autonomic computing for parallel computing systems. One approach among three proposed approaches in swarm-array computing based on landscapes of intelligent cores, in which the cores of a parallel computing system are abstracted to swarm agents, is investigated. A task is executed and transferred seamlessly between cores in the proposed approach thereby achieving self-ware properties that characterize autonomic computing. FPGAs are considered as an experimental platform taking into account its application in space robotics. The feasibility of the proposed approach is validated on the SeSAm multi-agent simulator.
Resumo:
Can autonomic computing concepts be applied to traditional multi-core systems found in high performance computing environments? In this paper, we propose a novel synergy between parallel computing and swarm robotics to offer a new computing paradigm, `Swarm-Array Computing' that can harness and apply autonomic computing for parallel computing systems. One approach among three proposed approaches in swarm-array computing based on landscapes of intelligent cores, in which the cores of a parallel computing system are abstracted to swarm agents, is investigated. A task gets executed and transferred seamlessly between cores in the proposed approach thereby achieving self-ware properties that characterize autonomic computing. FPGAs are considered as an experimental platform taking into account its application in space robotics. The feasibility of the proposed approach is validated on the SeSAm multi-agent simulator.
Resumo:
In the 1990s the Message Passing Interface Forum defined MPI bindings for Fortran, C, and C++. With the success of MPI these relatively conservative languages have continued to dominate in the parallel computing community. There are compelling arguments in favour of more modern languages like Java. These include portability, better runtime error checking, modularity, and multi-threading. But these arguments have not converted many HPC programmers, perhaps due to the scarcity of full-scale scientific Java codes, and the lack of evidence for performance competitive with C or Fortran. This paper tries to redress this situation by porting two scientific applications to Java. Both of these applications are parallelized using our thread-safe Java messaging system—MPJ Express. The first application is the Gadget-2 code, which is a massively parallel structure formation code for cosmological simulations. The second application uses the finite-domain time-difference method for simulations in the area of computational electromagnetics. We evaluate and compare the performance of the Java and C versions of these two scientific applications, and demonstrate that the Java codes can achieve performance comparable with legacy applications written in conventional HPC languages. Copyright © 2009 John Wiley & Sons, Ltd.
Resumo:
The work reported in this paper proposes Swarm-Array computing, a novel technique inspired by swarm robotics, and built on the foundations of autonomic and parallel computing. The approach aims to apply autonomic computing constructs to parallel computing systems and in effect achieve the self-ware objectives that describe self-managing systems. The constitution of swarm-array computing comprising four constituents, namely the computing system, the problem/task, the swarm and the landscape is considered. Approaches that bind these constituents together are proposed. Space applications employing FPGAs are identified as a potential area for applying swarm-array computing for building reliable systems. The feasibility of a proposed approach is validated on the SeSAm multi-agent simulator and landscapes are generated using the MATLAB toolkit.
Resumo:
The work reported in this paper proposes ‘Intelligent Agents’, a Swarm-Array computing approach focused to apply autonomic computing concepts to parallel computing systems and build reliable systems for space applications. Swarm-array computing is a robotics a swarm robotics inspired novel computing approach considered as a path to achieve autonomy in parallel computing systems. In the intelligent agent approach, a task to be executed on parallel computing cores is considered as a swarm of autonomous agents. A task is carried to a computing core by carrier agents and can be seamlessly transferred between cores in the event of a predicted failure, thereby achieving self-* objectives of autonomic computing. The approach is validated on a multi-agent simulator.
Resumo:
How can a bridge be built between autonomic computing approaches and parallel computing systems? The work reported in this paper is motivated towards bridging this gap by proposing a swarm-array computing approach based on ‘Intelligent Agents’ to achieve autonomy for distributed parallel computing systems. In the proposed approach, a task to be executed on parallel computing cores is carried onto a computing core by carrier agents that can seamlessly transfer between processing cores in the event of a predicted failure. The cognitive capabilities of the carrier agents on a parallel processing core serves in achieving the self-ware objectives of autonomic computing, hence applying autonomic computing concepts for the benefit of parallel computing systems. The feasibility of the proposed approach is validated by simulation studies using a multi-agent simulator on an FPGA (Field-Programmable Gate Array) and experimental studies using MPI (Message Passing Interface) on a computer cluster. Preliminary results confirm that applying autonomic computing principles to parallel computing systems is beneficial.
Resumo:
The fast increase in the size and number of databases demands data mining approaches that are scalable to large amounts of data. This has led to the exploration of parallel computing technologies in order to perform data mining tasks concurrently using several processors. Parallelization seems to be a natural and cost-effective way to scale up data mining technologies. One of the most important of these data mining technologies is the classification of newly recorded data. This paper surveys advances in parallelization in the field of classification rule induction.