190 resultados para PALMITATE
Resumo:
Endoplasmic reticulum (ER) homeostasis alteration contributes to pancreatic β-cell dysfunction and death and favors the development of diabetes. In this study, we demonstrate that HDLs protect β-cells against ER stress induced by thapsigargin, cyclopiazonic acid, palmitate, insulin overexpression, and high glucose concentrations. ER stress marker induction and ER morphology disruption mediated by these stimuli were inhibited by HDLs. Using a temperature-sensitive viral glycoprotein folding mutant, we show that HDLs correct impaired protein trafficking and folding induced by thapsigargin and palmitate. The ability of HDLs to protect β-cells against ER stress was inhibited by brefeldin A, an ER to Golgi trafficking blocker. These results indicate that HDLs restore ER homeostasis in response to ER stress, which is required for their ability to promote β-cell survival. This study identifies a cellular mechanism mediating the beneficial effect of HDLs on β-cells against ER stress-inducing factors.
Resumo:
Pancreatic ß cells are highly specialized endocrine cells located within the islets of Langerhans in the pancreas. Their main role is to produce and secrete insulin, the hormone essential for the regulation of glucose homeostasis and body's metabolism. Diabetes mellitus develops when the amount of insulin released by ß cells is not sufficient to cover the metabolic demand. In type 1 diabetes (5-10% of diagnoses) insulin deficiency is caused by the autoimmune destruction of pancreatic ß cells. Type 2 diabetes (90% of diagnoses) results from a genetic predisposition and from the presence of adverse environmental conditions. The combination of these factors reduces insulin sensitivity of peripheral target tissues, causes impairment in ß-cell function and can lead to partial loss of ß cells. The development of novel therapeutic strategies for the treatment of diabetes necessitates the comprehension of the cellular processes involved in dysfunction and loss of ß cells. My thesis was focused on the involvement in the physiopathological processes leading to the development of diabetes of a class of small regulatory RNA molecules, called microRNAs (miRNAs) that post- transcriptionally regulate gene expression. Global miRNA profiling in pancreatic islets of two animal models of diabetes, the db/db mice and mice that were fed a high fat diet (HFD), characterized by obesity and insulin resistance, led us to identify two groups of miRNAs displaying expression changes under pre-diabetic and diabetic conditions. Among the miRNAs already upregulated in pre-diabetic db/db mice and HFD mice, miR- 132 was found to have beneficial effects on pancreatic ß cell function and survival. Indeed, mimicking the upregulation of miR-132 in primary pancreatic islet cells and ß-cell lines improved glucose- induced insulin secretion and favored survival of the cells upon exposure to pro-apoptotic stimuli such as palmitate and cytokines. MiR-132 was found to exert its action by enhancing the expression of MafA, a transcription factor essential for ß-cell function, survival and identity. On the other hand, up-regulation of miR-199a-5p and miR-199a-3p was detectable only in the islets of diabetic db/db mice and resulted in impaired insulin secretion and sensitization of the cells to apoptosis. MiR-199a- 5p was found to decrease insulin secretion by inducing the expression of granuphilin, a potent inhibitor of ß cell exocytosis. In contrast, miR-199a-3p was demonstrated to directly target and reduce the expression of two key ß-cell genes, mTOR and cMET, resulting in impaired ß-cell adaptation to metabolic demands and loss by apoptosis. Our findings suggest that miRNAs are important players in the onset of type 2 diabetes. MiRNA expression is adjusted in pancreatic ß cells exposed to a diabetogenic environment. These changes initially concern miRNAs responsible for adaptive processes aimed at compensating the onset of insulin resistance, but later such changes can be overlapped by modifications in the level of several additional miRNAs that favor ß-cell failure and the onset of type 2 diabetes.
Resumo:
Owing to its high fat content, the classical Western diet has a range of adverse effects on the heart, including enhanced inflammation, hypertrophy, and contractile dysfunction. Proinflammatory factors secreted by cardiac cells, which are under the transcriptional control of nuclear factor-κB (NF-κB), may contribute to heart failure and dilated cardiomyopathy. The underlying mechanisms are complex, since they are linked to systemic metabolic abnormalities and changes in cardiomyocyte phenotype. Peroxisome proliferator-activated receptors (PPARs) are transcription factors that regulate metabolism and are capable of limiting myocardial inflammation and hypertrophy via inhibition of NF-κB. Since PPARβ/δ is the most prevalent PPAR isoform in the heart, we analyzed the effects of the PPARβ/δ agonist GW501516 on inflammatory parameters. A high-fat diet induced the expression of tumor necrosis factor-α, monocyte chemoattractant protein-1, and interleukin-6, and enhanced the activity of NF-κB in the heart of mice. GW501516 abrogated this enhanced proinflammatory profile. Similar results were obtained when human cardiac AC16 cells exposed to palmitate were coincubated with GW501516. PPARβ/δ activation by GW501516 enhanced the physical interaction between PPARβ/δ and p65, which suggests that this mechanism may also interfere NF-κB transactivation capacity in the heart. GW501516-induced PPARβ/δ activation can attenuate the inflammatory response induced in human cardiac AC16 cells exposed to the saturated fatty acid palmitate and in mice fed a high-fat diet. This is relevant, especially taking into account that PPARβ/δ has been postulated as a potential target in the treatment of obesity and the insulin resistance state.
Resumo:
The transcriptional coactivator peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1α) is a chief activator of mitochondrial and metabolic programs and protects against atrophy in skeletal muscle (skm). Here we tested whether PGC-1α overexpression could restructure the transcriptome and metabolism of primary cultured human skm cells, which display a phenotype that resembles the atrophic phenotype. An oligonucleotide microarray analysis was used to reveal the effects of PGC-1α on the whole transcriptome. Fifty-three different genes showed altered expression in response to PGC-1α: 42 upregulated and 11 downregulated. The main gene ontologies (GO) associated with the upregulated genes were mitochondrial components and processes and this was linked with an increase in COX activity, an indicator of mitochondrial content. Furthermore, PGC-1α enhanced mitochondrial oxidation of palmitate and lactate to CO2, but not glucose oxidation. The other most significantly associated GOs for the upregulated genes were chemotaxis and cytokine activity, and several cytokines, including IL-8/CXCL8, CXCL6, CCL5 and CCL8, were within the most highly induced genes. Indeed, PGC-1α highly increased IL-8 cell protein content. The most upregulated gene was PVALB, which is related to calcium signaling. Potential metabolic regulators of fatty acid and glucose storage were among mainly regulated genes. The mRNA and protein level of FITM1/FIT1, which enhances the formation of lipid droplets, was raised by PGC-1α, while in oleate-incubated cells PGC-1α increased the number of smaller lipid droplets and modestly triglyceride levels, compared to controls. CALM1, the calcium-modulated δ subunit of phosphorylase kinase, was downregulated by PGC-1α, while glycogen phosphorylase was inactivated and glycogen storage was increased by PGC-1α. In conclusion, of the metabolic transcriptome deficiencies of cultured skm cells, PGC-1α rescued the expression of genes encoding mitochondrial proteins and FITM1. Several myokine genes, including IL-8 and CCL5, which are known to be constitutively expressed in human skm cells, were induced by PGC-1α.
Resumo:
HDLs protect pancreatic beta cells against apoptosis induced by several endoplasmic reticulum (ER) stressors, including thapsigargin, cyclopiazonic acid, palmitate and insulin over-expression. This protection is mediated by the capacity of HDLs to maintain proper ER morphology and ER functions such as protein folding and trafficking. Here, we identified a distinct mode of protection exerted by HDLs in beta cells challenged with tunicamycin (TM), a protein glycosylation inhibitor inducing ER stress. HDLs were found to inhibit apoptosis induced by TM in the MIN6 insulinoma cell line and this correlated with the maintenance of a normal ER morphology. Surprisingly however, this protective response was neither associated with a significant ER stress reduction, nor with restoration of protein folding and trafficking in the ER. These data indicate that HDLs can use at least two mechanisms to protect beta cells against ER stressors. One that relies on the maintenance of ER function and one that operates independently of ER function modulation. The capacity of HDLs to activate several anti-apoptotic pathways in beta cells may explain their ability to efficiently protect these cells against a variety of insults.
Resumo:
Indirect evidence suggests that activity of pyruvate dehydrogenase (PDH) influences recovery of the myocardium after transient ischemia. The present study examined the relationship between postischemic injury and activity of PDH and the role of mitochondrial calcium uptake for observed changes in PDH activity. Isovolumically beating isolated rat hearts perfused with erythrocyte-enriched buffer containing glucose, palmitate, and insulin were submitted to either 20 or 35 min of no-flow ischemia. After 20 min of no-flow ischemia, hearts exhibited complete recovery of developed left ventricular pressure (DLVP). The proportion of myocardial PDH in the active state was modestly increased to 38% (compared with 13% in control hearts) without a change in glucose oxidation. In contrast, in hearts subjected to 35 min of no-flow ischemia (which exhibited poor recovery of DLVP), there was marked stimulation of glucose oxidation (+460%; P < 0.01) and pronounced increase in the active fraction of PDH to 72% (P < 0.01). Glycolytic flux was not significantly altered. Ruthenium red (6 microM) completely abolished the activation of PDH and the increase in glucose oxidation. The results indicate that variable stimulation of glucose oxidation during reperfusion is related to different degrees of activation of PDH, which depends on the severity of the ischemic injury. Activation of PDH seems to be mediated by myocardial calcium uptake.
Resumo:
Ingestion of pure fructose stimulates de novo lipogenesis and gluconeogenesis. This may however not be relevant to typical nutritional situations, where fructose is invariably ingested with glucose. We therefore assessed the metabolic fate of fructose incorporated in a mixed meal without or with glucose in eight healthy volunteers. Each participant was studied over six hours after the ingestion of liquid meals containing either 13C-labelled fructose, unlabeled glucose, lipids and protein (Fr + G) or 13C-labelled fructose, lipids and protein, but without glucose (Fr), or protein and lipids alone (ProLip). After Fr + G, plasma 13C-glucose production accounted for 19.0% ± 1.5% and 13CO2 production for 32.2% ± 1.3% of 13C-fructose carbons. After Fr, 13C-glucose production (26.5% ± 1.4%) and 13CO2 production (36.6% ± 1.9%) were higher (p < 0.05) than with Fr + G. 13C-lactate concentration and very low density lipoprotein VLDL 13C-palmitate concentrations increased to the same extent with Fr + G and Fr, while chylomicron 13C-palmitate tended to increase more with Fr + G. These data indicate that gluconeogenesis, lactic acid production and both intestinal and hepatic de novo lipogenesis contributed to the disposal of fructose carbons ingested together with a mixed meal. Co-ingestion of glucose decreased fructose oxidation and gluconeogenesis and tended to increase 13C-pamitate concentration in gut-derived chylomicrons, but not in hepatic-borne VLDL-triacylglycerol (TG). This trial was approved by clinicaltrial. gov. Identifier is NCT01792089.
Resumo:
The increase in VLDL TAG concentration after ingestion of a high-fructose diet is more pronounced in men than in pre-menopausal women. We hypothesised that this may be due to a lower fructose-induced stimulation of de novo lipogenesis (DNL) in pre-menopausal women. To evaluate this hypothesis, nine healthy male and nine healthy female subjects were studied after ingestion of oral loads of fructose enriched with 13C6 fructose. Incorporation of 13C into breath CO2, plasma glucose and plasma VLDL palmitate was monitored to evaluate total fructose oxidation, gluconeogenesis and hepatic DNL, respectively. Substrate oxidation was assessed by indirect calorimetry. After 13C fructose ingestion, 44.0 (sd 3.2)% of labelled carbons were recovered in plasma glucose in males v. 41.9 (sd 2.3)% in females (NS), and 42.9 (sd 3.7)% of labelled carbons were recovered in breath CO2 in males v. 43.0 (sd 4.5)% in females (NS), indicating similar gluconeogenesis from fructose and total fructose oxidation in males and females. The area under the curve for 13C VLDL palmitate tracer-to-tracee ratio was four times lower in females (P < 0.05), indicating a lower DNL. Furthermore, lipid oxidation was significantly suppressed in males (by 16.4 (sd 5.2), P < 0.05), but it was not suppressed in females ( -1.3 (sd 4.7)%). These results support the hypothesis that females may be protected against fructose-induced hypertriglyceridaemia because of a lower stimulation of DNL and a lower suppression of lipid oxidation.
Resumo:
L'insuline, produite par les cellules β du pancréas, joue un rôle central dans le contrôle de la glycémie. Un manque d'insuline entraine le diabète de type 2, une maladie répandue au stade d'épidémie au niveau mondial. L'augmentation du nombre de personnes obèses est une des causes principales du développement de la maladie. Avec l'obésité les tissus tels que le foie, le muscle, et le tissu adipeux deviennent résistants à l'insuline. En général, cette résistance est équilibrée par une augmentation de la sécrétion d'insuline. De ce fait, un grand nombre d'individus obèses ne deviennent pas diabétiques. Lorsque les cellules β ne produisent plus suffisamment d'insuline, alors le diabète se développe. Dans l'obésité, les cellules graisseuses sont résistantes à l'insuline et relâchent des lipides et autres produits qui affectent le bon fonctionnement et la vie des cellules β. «c-Jun Ν terminal Kinase» (JNK) est une enzyme qui joue un rôle important dans la résistance de l'insuline des cellules graisseuses. Cette même en2yme contribue aussi au déclin de la cellule β dans les conditions diabétogènes, et représente ainsi une cible thérapeutique potentielle du diabète. L'objectif de cette thèse a été de comprendre le mécanisme conduisant à l'activité de JNK dans les adipocytes et cellules β, dans l'obésité et le diabète de type 2. Nous montrons que les variations de JNK sont la conséquence de taux anormaux de JIP-1/EB1, une protéine qui a été impliquée dans certaines formes génétiques de diabète de type 2. En outre nous décrivons le mécanisme responsable des anomalies de JIP1/IB1 dans les adipocytes et cellules β. La restauration des taux de JIP-1/EB1 dans les deux types cellulaires pourrait être un objectif des thérapeutiques antidiabétiques actuelles et futures. - Le nombre d'individus touchés par le diabète de type 2 atteint aujourd'hui des proportions épidémiques à l'échelle mondiale. L'augmentation de la prévalence de l'obésité est la cause principale du développement de la maladie, qui, en général, survient suite à une perte de la sensibilité à l'insuline des tissus périphériques. Dans un grand nombre des cas, l'insulino-résistance est compensée par une augmentation de la sécrétion de l'insuline par les cellules β pancréatiques. Le diabète apparaît lorsque l'insuline n'est plus produite en quantité suffisante pour contrecarrer la résistance à l'insuline des tissus. Le défaut de production de l'insuline résulte du dysfonctionnement et de la réduction massive des cellules β. Les acides gras libres non estérifiés, en particulier le palmitate, provenant d'une alimentation riche en lipides et libérés par les adipocytes insulino-résistants contribuent au déclin de la cellule β en activant la voie de signalisation «cJun N-terminal kinase» (JNK). L'activation de JNK contribue aussi à la résistance à l'insuline des adipocytes dans l'obésité, soulignant ainsi l'importance de cette voie de signalisation dans la pathophysiologie du diabète. L'objectif de cette thèse a été de comprendre les mécanismes qui régulent JNK dans les cellules β et les adipocytes. Nous montrons que l'activation de JNK dans ces deux types cellulaires est la conséquence de la variation des taux de «JNK interacting protein 1» appelé aussi «islet brain 1» (JEP-1/ΓΒΙ), une protéine qui attache les kinases de la signalisation de JNK et dont des variations génétiques ont été associées avec le diabète de type 2. Dans les cellules β cultivées avec du palmitate, ainsi que dans les adipocytes dans l'obésité, l'expression de JEP-l/BBl est modifiée. Les modulations de l'expression de JEP-1/ΓΒΙ sont réalisées par le facteur de transcription «inducible cAMP early repressor» (ICER). L'expression d'ICER dans les adipocytes est diminuée dans l'obésité, et corrèle avec l'augmentation des niveaux de JEP-1/IB1. A l'inverse, le niveau d'expression d'ICER est augmenté dans les cellules β cultivées avec du palmitate, et cette augmentation perturbe le bon fonctionnement des cellules en réduisant les niveaux de JEP-l/IBl. Comme le palmitate, les particules pro-athérogéniques LDL-cholesterol oxydés, sont élevées chez les personnes obèses et diabétiques et sont délétères aux cellules β. Ces particules modifiées activent JNK dans les cellules β en diminuant l'expression de JIP-1/IB1 via ICER. Tous ces résultats montrent que le dérèglement de l'expression de JIP-l/EBl par ICER joue un rôle central dans l'activation de JNK dans les adipocytes et cellules β en souffrance dans l'obésité et le diabète de type 2. La restauration appropriée des niveaux de JEPl/IBl et d'ICER pourrait être considérée comme un objectif pour mesurer l'efficacité des traitements antidiabétiques actuels et futurs. - Type 2 diabetes has reached epidemic proportions worldwide, and poses a major socio-economic burden on developed and developing societies. The disease is often accompanied by obesity, and arises when β-cells produce insufficient insulin to meet the increased hormone demand, caused by insulin resistance. In obesity, enlargement of adipocytes contribute to their dysfunction, which is characterized by the abnormal release of some bioactive products such as non-esterified free fatty acids (NEF As). Chronic plasma elevation of NEF As elicits β-cell dysfunction and death, thereby, representing a key feature for development of diabetes in obesity (diabesity). Palmitate is the most abundant circulating NEF As in obesity, which triggers adipocytes and β-cell dysfunction. The effects of palmitate rely on the induction of the cJun N-terminal kinase (JNK) pathway. Activation of JNK promotes both β-cells dysfunction and insulin resistance in adipocytes. This thesis was undertaken to investigate the mechanisms accounting for the induction of the JNK pathway caused by palmitate. JNK is regulated by the scaffold protein JNK interacting protein-1, also called islet brain 1 (JIP-1/IB1). The levels of JDM/IB1 are critical for glucose homeostasis, as genetic variations within the gene were associated with diabetes. We found that activation of JNK in both, β-cells exposed to palmitate, and in adipocytes of obese mice, results from variations in the expression of JIP-l/EBl. Modifications in the JIP-1/IB1 levels were the consequence of abnormal expression of the inducible cAMP early repressor (ICER) in the two cell types. In addition, our data show that this repressor plays a key role in abnormal production of adipocyte hormones and β-cell dysfunction evoked by the pro-atherogenic oxidized LDL. Taken together, this study proposes that fine-tuning of appropriate levels of JIP-l/EBl, and ICER could circumvent β-cell failure, adipocyte dysfunction, and thereby, development of diabesity.
Resumo:
SUMMARY : Peroxisome proliferator-activated receptor ß/δ protects against obesity by reducing dyslipidemia and insulin resistance via effects in various organs, including muscle, adipose tissue and liver. However, nothing is known about the function of PPARß in pancreas, a prime organ in the control of glucose homeostasis. To gain insight into so far hypothetical functions of this PPAR isotype in ß-cell function, we specifically ablated Pparß in the whole epithelial compartment of the pancreas. The mutated mice presented expanded ß-cell mass, possibly, this is due to increased burst of ß-cell proliferation at 2 weeks of age. These PPARß null pancreas mice exhibit hyperinsulinemia-hypoglycaemia starting at 4 weeks of age, due to hyperfunctionality of ß-cell. Gene expression profiling indicated a broad repressive function of PPARß impacting the vesicular and granular compartment, actin cytoskeleton, and metabolism of glucose and fatty acids. Analyses of insulin release from isolated islets revealed accelerated second-phase of glucose-stimulated insulin secretion. Higher levels of PKD and PKCS in mutated animals, in concert with F-actin disassembly, lead to an increased insulin secretion and its associated systemic effects. Enhanced palmitate potentiation of glucose-stimulated insulin secretion in PPARß mutant islets, suggests an important role of this receptor in lipid/glucose metabolism in ß-cell. Taken together, these results provide evidence for PPARß playing a repressive role on ß-cell growth and insulin exocytosis, and shed new light on its metabolic .action. RESUME : Le récepteur nucléaire PPARß (Peroxisome proliferator-activated receptor ß/δ) protège contre l'obésité en réduisant la dyslipidémie et la résistance à l'insuline dans différents organes, comme le muscle, le tissue adipeux et le foie. Cependant, il y a, à ce jour, très peu de connaissance par rapport au rôle de PPARß dans le pancréas, qui est un organe très important dans le contrôle homéostatique du glucose. Afin de comprendre le rôle de cet isotype de PPAR dans le fonctionnement des cellules beta du pancréas, nous avons invalidé le gène Pparß dans tout le compartiment pancréatique de la souris. Ces souris mutantes présentent une augmentation de la masse totale de cellules beta; Cela serait dû à une intense prolifération des cellules beta à 2 semaines après la naissance. Également, ces souris présentent une hyperinsulinémie et une hypoglycémie qui commencent à l'âge de 4 semaines; la raison de ce phénotype serait une hyperactivité des cellules beta. Le profil d'expression génique indique une fonction répressive globale de PPARß en se référant aux compartiments vésiculaire et granulaire, au cytosquelette d'actine, et au métabolisme du glucose et des acides gras. L'analyse de la sécrétion d'insuline par les cellules beta a démontré que la deuxième phase de sécrétion d'insuline après stimulation au glucose est augmentée. Les niveaux élevés de PKD et PKCS dans les îlots pancréatiques de souris mutantes, ainsi qu'une augmentation de la dépolymérisation des filaments d'active génèrent un surplus de sécrétion d'insuline après stimulation au glucose. Les îlots pancréatiques des souris mutantes secrètent plus d'insuline après stimulation au glucose et au palmitate que les îlots de souris contrôles. Ceci suggère un rôle important de PPARß dans le métabolisme des lipides et du glucose des cellules beta. En résumé, ces résultats mettent en évidence un rôle répressif de PPARß dans la croissance des cellules beta et dans l'exocytose d'insuline.
Resumo:
Bakery products such as biscuits, cookies, and pastries represent a good medium for iron fortification in food products, since they are consumed by a large proportion of the population at risk of developing iron deficiency anemia, mainly children. The drawback, however, is that iron fortification can promote oxidation. To assess the extent of this, palm oil added with heme iron and different antioxidants was used as a model for evaluating the oxidative stability of some bakery products, such as baked goods containing chocolate. The palm oil samples were heated at 220°C for 10 min to mimic the conditions found during a typical baking processing. The selected antioxidants were a free radical scavenger (tocopherol extract (TE), 0 and 500 mg/kg), an oxygen scavenger (ascorbyl palmitate (AP), 0 and 500 mg/kg), and a chelating agent (citric acid (CA), 0 and 300 mg/kg). These antioxidants were combined using a factorial design and were compared to a control sample, which was not supplemented with antioxidants. Primary (peroxide value and lipid hydroperoxide content) and secondary oxidation parameters (p-anisidine value, p-AnV) were monitored over a period of 200 days in storage at room temperature. The combination of AP and CA was the most effective treatment in delaying the onset of oxidation. TE was not effective in preventing oxidation. The p-AnV did not increase during the storage period, indicating that this oxidation marker was not suitable for monitoring oxidation in this model.
Resumo:
Bakery products such as biscuits, cookies, and pastries represent a good medium for iron fortification in food products, since they are consumed by a large proportion of the population at risk of developing iron deficiency anemia, mainly children. The drawback, however, is that iron fortification can promote oxidation. To assess the extent of this, palm oil added with heme iron and different antioxidants was used as a model for evaluating the oxidative stability of some bakery products, such as baked goods containing chocolate. The palm oil samples were heated at 220°C for 10 min to mimic the conditions found during a typical baking processing. The selected antioxidants were a free radical scavenger (tocopherol extract (TE), 0 and 500 mg/kg), an oxygen scavenger (ascorbyl palmitate (AP), 0 and 500 mg/kg), and a chelating agent (citric acid (CA), 0 and 300 mg/kg). These antioxidants were combined using a factorial design and were compared to a control sample, which was not supplemented with antioxidants. Primary (peroxide value and lipid hydroperoxide content) and secondary oxidation parameters (p-anisidine value, p-AnV) were monitored over a period of 200 days in storage at room temperature. The combination of AP and CA was the most effective treatment in delaying the onset of oxidation. TE was not effective in preventing oxidation. The p-AnV did not increase during the storage period, indicating that this oxidation marker was not suitable for monitoring oxidation in this model.
Resumo:
Effects of water activity and 1-propanol concentration on synthesis of propyl oleate from oleic acid using Aspergillus niger cell-bound lipases in isooctane are described. A. niger produces lipases (EC 3.1.1.3) which partly bind to the mycelium during growth. Ester production was monitored for 72 hours at different 1-propanol concentrations and water activities. Aliquots were sequentially withdrawn and propyl esters were quantified using GC and methyl palmitate as an internal standard. In all assayed conditions A. niger cell-bound lipases catalysed propyl oleate synthesis, but at different degrees.
Resumo:
Chronic intake of saturated free fatty acids is associated with diabetes and may contribute to the impairment of functional beta cell mass. Mitogen activated protein kinase 8 interacting protein 1 also called islet brain 1 (IB1) is a candidate gene for diabetes that is required for beta cell survival and glucose-induced insulin secretion (GSIS). In this study we investigated whether IB1 expression is required for preserving beta cell survival and function in response to palmitate. Chronic exposure of MIN6 and isolated rat islets cells to palmitate led to reduction of the IB1 mRNA and protein content. Diminution of IB1 mRNA and protein level relied on the inducible cAMP early repressor activity and proteasome-mediated degradation, respectively. Suppression of IB1 level mimicked the harmful effects of palmitate on the beta cell survival and GSIS. Conversely, ectopic expression of IB1 counteracted the deleterious effects of palmitate on the beta cell survival and insulin secretion. These findings highlight the importance in preserving the IB1 content for protecting beta cell against lipotoxicity in diabetes.
Resumo:
BACKGROUND: Exercise prevents the adverse effects of a high-fructose diet through mechanisms that remain unknown. OBJECTIVE: We assessed the hypothesis that exercise prevents fructose-induced increases in very-low-density lipoprotein (VLDL) triglycerides by decreasing the fructose conversion into glucose and VLDL-triglyceride and fructose carbon storage into hepatic glycogen and lipids. DESIGN: Eight healthy men were studied on 3 occasions after 4 d consuming a weight-maintenance, high-fructose diet. On the fifth day, the men ingested an oral (13)C-labeled fructose load (0.75 g/kg), and their total fructose oxidation ((13)CO2 production), fructose storage (fructose ingestion minus (13)C-fructose oxidation), fructose conversion into blood (13)C glucose (gluconeogenesis from fructose), blood VLDL-(13)C palmitate (a marker of hepatic de novo lipogenesis), and lactate concentrations were monitored over 7 postprandial h. On one occasion, participants remained lying down throughout the experiment [fructose treatment alone with no exercise condition (NoEx)], and on the other 2 occasions, they performed a 60-min exercise either 75 min before fructose ingestion [exercise, then fructose condition (ExFru)] or 90 min after fructose ingestion [fructose, then exercise condition (FruEx)]. RESULTS: Fructose oxidation was significantly (P < 0.001) higher in the FruEx (80% ± 3% of ingested fructose) than in the ExFru (46% ± 1%) and NoEx (49% ± 1%). Consequently, fructose storage was lower in the FruEx than in the other 2 conditions (P < 0.001). Fructose conversion into blood (13)C glucose, VLDL-(13)C palmitate, and postprandial plasma lactate concentrations was not significantly different between conditions. CONCLUSIONS: Compared with sedentary conditions, exercise performed immediately after fructose ingestion increases fructose oxidation and decreases fructose storage. In contrast, exercise performed before fructose ingestion does not significantly alter fructose oxidation and storage. In both conditions, exercise did not abolish fructose conversion into glucose or its incorporation into VLDL triglycerides. This trial was registered at clinicaltrials.gov as NCT01866215.