934 resultados para P300 latency
Resumo:
Remote transient changes in the environment, such as the onset of visual distractors, impact on the exe- cution of target directed saccadic eye movements. Studies that have examined the latency of the saccade response have shown conflicting results. When there was an element of target selection, saccade latency increased as the distance between distractor and target increased. In contrast, when target selection is minimized by restricting the target to appear on one axis position, latency has been found to be slowest when the distractor is shown at fixation and reduces as it moves away from this position, rather than from the target. Here we report four experiments examining saccade latency as target and distractor posi- tions are varied. We find support for both a dependence of saccade latency on distractor distance from target and from fixation: saccade latency was longer when distractor is shown close to fixation and even longer still when shown in an opposite location (180°) to the target. We suggest that this is due to inhib- itory interactions between the distractor, fixation and the target interfering with fixation disengagement and target selection.
Resumo:
Studiesthat use prolonged periods of sensory stimulation report associations between regional reductions in neural activity and negative blood oxygenation level-dependent (BOLD) signaling. However, the neural generators of the negative BOLD response remain to be characterized. Here, we use single-impulse electrical stimulation of the whisker pad in the anesthetized rat to identify components of the neural response that are related to “negative” hemodynamic changes in the brain. Laminar multiunit activity and local field potential recordings of neural activity were performed concurrently withtwo-dimensional optical imaging spectroscopy measuring hemodynamic changes. Repeated measurements over multiple stimulation trials revealed significant variations in neural responses across session and animal datasets. Within this variation, we found robust long-latency decreases (300 and 2000 ms after stimulus presentation) in gammaband power (30 – 80 Hz) in the middle-superficial cortical layers in regions surrounding the activated whisker barrel cortex. This reduction in gamma frequency activity was associated with corresponding decreases in the hemodynamic responses that drive the negative BOLD signal. These findings suggest a close relationship between BOLD responses and neural events that operate over time scales that outlast the initiating sensory stimulus, and provide important insights into the neurophysiological basis of negative neuroimaging signals.
Resumo:
Background: P300 and steady-state visual evoked potential(SSVEP) approaches have been widely used for brain–computer interface (BCI) systems. However, neither of these approaches can work for all subjects. Some groups have reported that a hybrid BCI that combines two or more approaches might provide BCI functionality to more users. Hybrid P300/SSVEP BCIs have only recently been developed and validated, and very few avenues to improve performance have been explored. New method: The present study compares an established hybrid P300/SSVEP BCIs paradigm to a new paradigm in which shape changing, instead of color changing, is adopted for P300 evocation to decrease the degradation on SSVEP strength. Result: The result shows that the new hybrid paradigm presented in this paper yields much better performance than the normal hybrid paradigm. Comparison with existing method: A performance increase of nearly 20% in SSVEP classification is achieved using the new hybrid paradigm in comparison with the normal hybrid paradigm.Allthe paradigms except the normal hybrid paradigm used in this paper obtain 100% accuracy in P300 classification. Conclusions: The new hybrid P300/SSVEP BCIs paradigm in which shape changing, instead of color changing, could obtain as high classification accuracy of SSVEP as the traditional SSVEP paradigm and could obtain as high classification accuracy of P300 as the traditional P300 paradigm. P300 did not interfere with the SSVEP response using the new hybrid paradigm presented in this paper, which was superior to the normal hybrid P300/SSVEP paradigm.
Resumo:
Interferences from the spatially adjacent non-target stimuli evoke ERPs during non-target sub-trials and lead to false positives. This phenomenon is commonly seen in visual attention based BCIs and affects the performance of BCI system. Although, users or subjects tried to focus on the target stimulus, they still could not help being affected by conspicuous changes of the stimuli (flashes or presenting images) which were adjacent to the target stimulus. In view of this case, the aim of this study is to reduce the adjacent interference using new stimulus presentation pattern based on facial expression changes. Positive facial expressions can be changed to negative facial expressions by minor changes to the original facial image. Although the changes are minor, the contrast will be big enough to evoke strong ERPs. In this paper, two different conditions (Pattern_1, Pattern_2) were used to compare across objective measures such as classification accuracy and information transfer rate as well as subjective measures. Pattern_1 was a “flash-only” pattern and Pattern_2 was a facial expression change of a dummy face. In the facial expression change patterns, the background is a positive facial expression and the stimulus is a negative facial expression. The results showed that the interferences from adjacent stimuli could be reduced significantly (P<;0.05) by using the facial expression change patterns. The online performance of the BCI system using the facial expression change patterns was significantly better than that using the “flash-only” patterns in terms of classification accuracy (p<;0.01), bit rate (p<;0.01), and practical bit rate (p<;0.01). Subjects reported that the annoyance and fatigue could be significantly decreased (p<;0.05) using the new stimulus presentation pattern presented in this paper.
Resumo:
In this paper, a new paradigm is presented, to improve the performance of audio-based P300 Brain-computer interfaces (BCIs), by using spatially distributed natural sound stimuli. The new paradigm was compared to a conventional paradigm using spatially distributed sound to demonstrate the performance of this new paradigm. The results show that the new paradigm enlarged the N200 and P300 components, and yielded significantly better BCI performance than the conventional paradigm.
Resumo:
Latências do reflexo trigêmino-facial e índices cefalométricos foram analisados em 30 voluntários adultos normais, de 3 diferentes raças, sendo 10 brancos, 10 negros e 10 orientais. Idades variaram de 15 a 59 anos, alturas de 1,6 a 1,8 m e pesos de 60 a 80 kg. Os reflexos trigêmino-faciais foram obtidos por estimulação elétrica unilateral do nervo supra-orbital e captação nos músculos orbicularis oculi, para análise quantitativa de 3 respostas, ipsolateral precoce (R1), ipsolateral tardia (R2i) e contralateral tardia (R2c). Índices cefalométricos foram obtidos multiplicando-se por 100 a razão entre maior diâmetro transverso e maior diâmetro sagital do crânio. As médias dos índices cefalométricos de cada grupo foram compatíveis com as respectivas características raciais. As respostas R1, R2i e R2c não mostraram diferenças de latências estatisticamente significativas entre as 3 diferentes raças analisadas neste estudo.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Kaposi's sarcoma-associated herpesvirus (KSHV/human herpesvirus 8 [HHV8]) and Epstein-Barr virus (EBV/HHV4) are distantly related gammaherpesviruses causing tumors in humans. KSHV latency-associated nuclear antigen 1 (LANA1) is functionally similar to the EBV nuclear antigen-1 (EBNA1) protein expressed during viral latency, although they have no amino acid similarities. EBNA1 escapes cytotoxic lymphocyte (CTL) antigen processing by inhibiting its own proteosomal degradation and retarding its own synthesis to reduce defective ribosomal product processing. We show here that the LANA1 QED-rich central repeat (CR) region, particularly the CR2CR3 subdomain, also retards LANA1 synthesis and markedly enhances LANA1 stability in vitro and in vivo. LANA1 isoforms have half-lives greater than 24 h, and fusion of the LANA1 CR2CR3 domain to a destabilized heterologous protein markedly decreases protein turnover. Unlike EBNA1, the LANA1 CR2CR3 subdomain retards translation regardless of whether it is fused to the 5′ or 3′ end of a heterologous gene construct. Manipulation of sequence order, orientation, and composition of the CR2 and CR3 subdomains suggests that specific peptide sequences rather than RNA structures are responsible for synthesis retardation. Although mechanistic differences exist between LANA1 and EBNA1, the primary structures of both proteins have evolved to minimize provoking CTL immune responses. Simple strategies to eliminate these viral inhibitory regions may markedly improve vaccine effectiveness by maximizing CTL responses. Copyright © 2007, American Society for Microbiology. All Rights Reserved.
Resumo:
Pós-graduação em Fonoaudiologia - FFC
Resumo:
Pós-graduação em Fonoaudiologia - FFC
Resumo:
Pós-graduação em Fonoaudiologia - FFC
Resumo:
Introduction: Auditory Late Responses (ALR) assess central auditory processing by neuro electric activity of the auditory pathway and analyse the activities involved in cortical abilities of discrimination, attention and integration of the brain. Individuals withAsperger Syndrome experience changes in these skills, so it is important to research these potential this population. The objective of this paper was to describe the auditory late responses of two patients with Asperger Syndrome. Methods: The study included two male patients with Asperger Syndrome, of 7 and 12 years of age, treated in a study centre. The patients did not present any auditory complaint detected by an amnesis. The external auditory canal was inspected and audiological and auditory late responses assessed. After evaluation the components P2, N2 and P3 were analysed. Results: In both patients, the latency of the components P2, N2 and P3 were elongated in both ears. Regarding the amplitude of the P2 component, reduced values were found for the left ear of patient 1 and the right ear of patient 2. The N2 amplitude was reduced for both ears of patient 1 and only the right ear of patient 2. The two patients showed a decrease in the amplitude of the P3 only in the right ear. Conclusion:This study concludes that there were changes in the ALR results in both patients with Asperger Syndrome, suggesting alteration of the auditory function at the cortex level.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Fonoaudiologia - FFC
Resumo:
The information presented in this paper demonstrates the author's experience in previews cross-sectional studies conducted in Brazil, in comparison with the current literature. Over the last 10 years, auditory evoked potential (AEP) has been used in children with learning disabilities. This method is critical to analyze the quality of the processing in time and indicates the specific neural demands and circuits of the sensorial and cognitive process in this clinical population. Some studies with children with dyslexia and learning disabilities were shown here to illustrate the use of AEP in this population.