905 resultados para P2P and networked data management
Resumo:
Presentation at Open Repositories 2014, Helsinki, Finland, June 9-13, 2014
Resumo:
The telemetry data processing operation intended for a given mission are pre-defined by an onboard telemetry configuration, mission trajectory and overall telemetry methodology have stabilized lately for ISRO vehicles. The given problem on telemetry data processing is reduced through hierarchical problem reduction whereby the sequencing of operations evolves as the control task and operations on data as the function task. The function task Input, Output and execution criteria are captured into tables which are examined by the control task and then schedules when the function task when the criteria is being met.
Big Decisions and Sparse Data: Adapting Scientific Publishing to the Needs of Practical Conservation
Resumo:
The biggest challenge in conservation biology is breaking down the gap between research and practical management. A major obstacle is the fact that many researchers are unwilling to tackle projects likely to produce sparse or messy data because the results would be difficult to publish in refereed journals. The obvious solution to sparse data is to build up results from multiple studies. Consequently, we suggest that there needs to be greater emphasis in conservation biology on publishing papers that can be built on by subsequent research rather than on papers that produce clear results individually. This building approach requires: (1) a stronger theoretical framework, in which researchers attempt to anticipate models that will be relevant in future studies and incorporate expected differences among studies into those models; (2) use of modern methods for model selection and multi-model inference, and publication of parameter estimates under a range of plausible models; (3) explicit incorporation of prior information into each case study; and (4) planning management treatments in an adaptive framework that considers treatments applied in other studies. We encourage journals to publish papers that promote this building approach rather than expecting papers to conform to traditional standards of rigor as stand-alone papers, and believe that this shift in publishing philosophy would better encourage researchers to tackle the most urgent conservation problems.
Resumo:
The iRODS system, created by the San Diego Supercomputing Centre, is a rule oriented data management system that allows the user to create sets of rules to define how the data is to be managed. Each rule corresponds to a particular action or operation (such as checksumming a file) and the system is flexible enough to allow the user to create new rules for new types of operations. The iRODS system can interface to any storage system (provided an iRODS driver is built for that system) and relies on its’ metadata catalogue to provide a virtual file-system that can handle files of any size and type. However, some storage systems (such as tape systems) do not handle small files efficiently and prefer small files to be packaged up (or “bundled”) into larger units. We have developed a system that can bundle small data files of any type into larger units - mounted collections. The system can create collection families and contains its’ own extensible metadata, including metadata on which family the collection belongs to. The mounted collection system can work standalone and is being incorporated into the iRODS system to enhance the systems flexibility to handle small files. In this paper we describe the motivation for creating a mounted collection system, its’ architecture and how it has been incorporated into the iRODS system. We describe different technologies used to create the mounted collection system and provide some performance numbers.
Resumo:
Climate-G is a large scale distributed testbed devoted to climate change research. It is an unfunded effort started in 2008 and involving a wide community both in Europe and US. The testbed is an interdisciplinary effort involving partners from several institutions and joining expertise in the field of climate change and computational science. Its main goal is to allow scientists carrying out geographical and cross-institutional data discovery, access, analysis, visualization and sharing of climate data. It represents an attempt to address, in a real environment, challenging data and metadata management issues. This paper presents a complete overview about the Climate-G testbed highlighting the most important results that have been achieved since the beginning of this project.
Resumo:
The contribution non-point P sources make to the total P loading on water bodies in agricultural catchments has not been fully appreciated. Using data derived from plot scale experimental studies, and modelling approaches developed to simulate system behaviour under differing management scenarios, a fuller understanding of the processes controlling P export and transformations along non-point transport pathways can be achieved. One modelling approach which has been successfully applied to large UK catchments (50-350km2 in area) is applied here to a small, 1.5 km2 experimental catchment. The importance of scaling is discussed in the context of how such approaches can extrapolate the results from plot-scale experimental studies to full catchment scale. However, the scope of such models is limited, since they do not at present directly simulate the processes controlling P transport and transformation dynamics. As such, they can only simulate total P export on an annual basis, and are not capable of prediction over shorter time scales. The need for development of process-based models to help answer these questions, and for more comprehensive UK experimental studies is highlighted as a pre-requisite for the development of suitable and sustainable management strategies to reduce non-point P loading on water bodies in agricultural catchments.
Resumo:
Instrumentation and automation plays a vital role to managing the water industry. These systems generate vast amounts of data that must be effectively managed in order to enable intelligent decision making. Time series data management software, commonly known as data historians are used for collecting and managing real-time (time series) information. More advanced software solutions provide a data infrastructure or utility wide Operations Data Management System (ODMS) that stores, manages, calculates, displays, shares, and integrates data from multiple disparate automation and business systems that are used daily in water utilities. These ODMS solutions are proven and have the ability to manage data from smart water meters to the collaboration of data across third party corporations. This paper focuses on practical, utility successes in the water industry where utility managers are leveraging instantaneous access to data from proven, commercial off-the-shelf ODMS solutions to enable better real-time decision making. Successes include saving $650,000 / year in water loss control, safeguarding water quality, saving millions of dollars in energy management and asset management. Immediate opportunities exist to integrate the research being done in academia with these ODMS solutions in the field and to leverage these successes to utilities around the world.
Resumo:
The objective of this study is to understand how an assembly company, that is considered a focal company in the chain of Brazilian white goods sector, can influence the supply chain management established with its first tier suppliers. This is an exploratory qualitative study in which the information was gathered through direct observations, documents' retention, and data from interviews held with management-level employees of the sales and product development areas of the focal company and of the production area of the suppliers' companies. This study indicates that the operations strategy of the focal company influences the supply chain management and that the common business processes shared by its suppliers are a way to verify the truth of such statement. The suppliers cooperate closely with the focal company when complementing their business processes and consequently supporting the company to pursue its operations strategy. A set of mechanisms to aid the comprehension of how the operations strategy can affect the business processes and therefore to achieve the result of this research were adopted. © EuroJournals Publishing, Inc. 2012.
Resumo:
The municipality of Petrolina, located in the semi-arid region of Brazil, is highlighted as an important agricultural growing region, however the irrigated areas have cleared natural vegetation inducing a loss of biodiversity. To analyze the contrast between these two ecosystems the large scale values of biomass production (BIO), evapotranspiration (ET) and water productivity (WP) were quantified. Monteithś equation was applied for estimating the absorbed photosynthetically active radiation (APAR), while the new SAFER (Simple Algorithm For Evapotranspiration Retrieving) algorithm was used to retrieve ET. The water productivity (WP) was analysed by the ratio of BIO by ET at monthly time scale with four bands of MODIS satellite images together with agrometeorological data for the year of 2011. The period with the highest water productivity values were from March to April in the rainy period for both irrigated and not irrigated conditions. However the largest ET rates were in November for irrigated crops and April for natural vegetation. More uniformity of the vegetation and water variables occurs in natural vegetation, evidenced by the lower values of standard deviation when comparing to irrigated crops, due to the different crop stages, cultural and irrigation managements. The models applied with MODIS satellite images on a large scale are considered to be suitable for water productivity assessments and for quantifying the effects of increasing irrigated areas over natural vegetation on regional water consumption in situations of quick changing land use pattern. © 2012 SPIE.
Resumo:
Includes bibliography
Resumo:
The two main forces affecting economic development are the ongoing technological revolution and the challenge of sustainability. Technological change is altering patterns of production, consumption and behaviour in societies; at the same time, it is becoming increasingly difficult to ensure the sustainability of these new patterns because of the constraints resulting from the negative externalities generated by economic growth and, in many cases, by technical progress itself. Reorienting innovation towards reducing or, if possible, reversing the effects of these externalities could create the conditions for synergies between the two processes. Views on the subject vary widely: while some maintain that these synergies can easily be created if growth follows an environmentally friendly model, summarized in the concept of green growth, others argue that production and consumption patterns are changing too slowly and that any technological fix will come too late. These considerations apply to hard technologies, essentially those used in production. The present document explores the opportunities being opened up by new ones, basically information and communication technologies, in terms of increasing the effectiveness (outcomes) and efficiency (relative costs) of soft technologies that can improve the way environmental issues are handled in business management and in public policy formulation and implementation.