1000 resultados para Oxygen isotope fractionation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sulfate aerosol plays an important but uncertain role in cloud formation and radiative forcing of the climate, and is also important for acid deposition and human health. The oxidation of SO2 to sulfate is a key reaction in determining the impact of sulfate in the environment through its effect on aerosol size distribution and composition. This thesis presents a laboratory investigation of sulfur isotope fractionation during SO2 oxidation by the most important gas-phase and heterogeneous pathways occurring in the atmosphere. The fractionation factors are then used to examine the role of sulfate formation in cloud processing of aerosol particles during the HCCT campaign in Thuringia, central Germany. The fractionation factor for the oxidation of SO2 by ·OH radicals was measured by reacting SO2 gas, with a known initial isotopic composition, with ·OH radicals generated from the photolysis of water at -25, 0, 19 and 40°C (Chapter 2). The product sulfate and the residual SO2 were collected as BaSO4 and the sulfur isotopic compositions measured with the Cameca NanoSIMS 50. The measured fractionation factor for 34S/32S during gas phase oxidation is αOH = (1.0089 ± 0.0007) − ((4 ± 5) × 10−5 )T (°C). Fractionation during oxidation by major aqueous pathways was measured by bubbling the SO2 gas through a solution of H2 O2

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Here we present stable isotope data for vertical profiles of dissolved molybdenum of the modern euxinic water columns of the Black Sea and two deeps of the Baltic Sea. Dissolved molybdenum in all water samples is depleted in salinity-normalized concentration and enriched in the heavy isotope (δ98Mo values up to + 2.9‰) compared to previously published isotope data of sedimentary molybdenum from the same range of water depths. Furthermore, δ98Mo values of all water samples from the Black Sea and anoxic deeps of the Baltic Sea are heavier than open ocean water. The observed isotope fractionation between sediments and the anoxic water column of the Black Sea are in line with the model of thiomolybdates that scavenge to particles under reducing conditions. An extrapolation to a theoretical pure MoS42− solution indicates a fractionation constant between MoS42− and authigenic solid Mo of 0.5 ± 0.3‰. Measured waters with all thiomolybdates coexisting in various proportions show larger but non-linear fractionation. The best explanation for our field observations is Mo scavenging by the thiomolybdates, dominantly — but not exclusively — present in the form of MoS42−. The Mo isotopic compositions of samples from the sediments and anoxic water column of the Baltic Sea are in overall agreement with those of the Black Sea at intermediate depth and corresponding sulphide concentrations. The more dynamic changes of redox conditions in the Baltic deeps complicate the Black Sea-derived relationship between thiomolybdates and Mo isotopic composition. In particular, the occasional flushing/mixing, of the deep waters, affects the corresponding water column and sedimentary data. δ98Mo values of the upper oxic waters of both basins are higher than predicted by mixing models based on salinity variations. The results can be explained by non-conservative behaviour of Mo under suboxic to anoxic conditions in the shallow bottom parts of the basin, most pronounced on the NW shelf of the Black Sea.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The natural abundance of stable Se isotopes in methylselenides reflects sources and formation conditions of methylselenides. We tested the effects of (i) different inorganic Se species spiked to soils and (ii) different soil samples on the extent of fungal biomethylation of Se and the Se isotope ratios (δ82/76Se) in methylselenides. Furthermore, we assessed the decrease of dissolved, bioavailable Se during three days of equilibration of the soils with Se-enriched solutions. We conducted closed microcosm experiments containing soil spiked with Se(IV) or Se(VI), a growth medium, and the fungus species Alternaria alternata for 11 d. The concentrations and isotope ratios of Se were determined in all components of the microcosm with multicollector ICP-MS. The equilibration of the spiked Se(IV) and Se(VI) for 3 d resulted in a decrease of dissolved, bioavailable Se concentrations by 32 to 44% and 8 to 14%, respectively. Very little isotope fractionation occurred during this phase, and it can be attributed to mixing of the added Se with the pre-existing Se in the soils and minor Se(IV) reduction in one experiment. In two of the incubated soils – moderately acidic roadside and garden soils – between 9.1 and 30% of the supplied Se(IV) and 1.7% of the supplied Se(VI) were methylated while in a strongly acidic forest soil no Se methylation occurred. The methylselenides derived from Se(IV) were strongly depleted in 82Se (δ82/76Se = − 3.3 to − 4.5‰) compared with the soil (0.16–0.45‰) and the added Se(IV) (0.20‰). The methylselenide yield of the incubations with Se(VI) was too small for isotope measurements. Our results demonstrate that Se source species and soil properties influence the extent of Se biomethylation and that the produced methylselenides contain isotopically light Se.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We analysed the Mo isotope composition of a comprehensive series of molybdenite samples from the porphyry- type Questa deposit (NM, USA), as well as one rhyolite and one granite sample, directly associated with the Mo mineralization. The δ98Mo of the molybdenites ranges between −0.48‰ and +0.40‰, with a median at −0.05‰. The median Mo isotope composition increases from early magmatic (−0.29‰) to hydrothermal (−0.05‰) breccia mineralization (median bulk breccia = −0.17‰) to late stockwork veining (+0.22‰). Moreover, variations of up to 0.34‰ are found between different molybdenite crystals within an individual hand specimen. The rhyolite sample with 0.12 μg g−1 Mo has δ98Mo = −0.57‰ and is lighter than all molybde- nites from the Questa deposit, interpreted to represent the igneous leftover after aqueous ore fluid exsolution. We recognize three Mo isotope fractionation processes that occur between about 700 and 350 °C, affecting the Mo iso- tope composition of magmatic–hydrothermal molybdenites. Δ1Mo: Minerals preferentially incorporate light Mo isotopes during progressive fractional crystallization in subvolcanic magma reservoirs, leaving behind a melt enriched in heavy Mo isotopes. Δ2Mo: Magmatic–hydrothermal fluids preferentially incorporate heavy Mo iso- topes upon fluid exsolution. Δ3Mo: Light Mo isotopes get preferentially incorporated in molybdenite during crys- tallization from an aqueous fluid, leaving behind a hydrothermal fluid that gets heavier with progressive molybdenite crystallization. The sum of all three fractionation processes produces molybdenites that record heavier δ98Mo compositions than their source magmas. This implies that the mean δ98Mo of molybdenites published so far (~0.4‰) likely represents a maximum value for the Mo isotope composition of Phanerozoic igneous upper crust.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The oxygen isotopic composition of precipitation (δ18Oprec) is well known to be a valuable (paleo-)climate proxy. Paleosols and sediments and hemicelluloses therein have the potential to serve as archives recording the isotopic composition of paleoprecipitation. In a companion paper (Zech et al., 2014) we investigated δ18Ohemicellulose values of plants grown under different climatic conditions in a climate chamber experiment. Here we present results of compound-specific δ18O analyses of arabinose, fucose and xylose extracted from modern topsoils (n = 56) along a large humid-arid climate transect in Argentina in order to answer the question whether hemicellulose biomarkers in soils reflect δ18Oprec. The results from the field replications indicate that the homogeneity of topsoils with regard to δ18Ohemicellulose is very high for most of the 20 sampling sites. Standard deviations for the field replications are 1.5‰, 2.2‰ and 1.7‰, for arabinose, fucose and xylose, respectively. Furthermore, all three hemicellulose biomarkers reveal systematic and similar trends along the climate gradient. However, the δ18Ohemicellulose values (mean of the three sugars) do not correlate positively with δ18Oprec (r = −0.54, p < 0.014, n = 20). By using a Péclet-modified Craig-Gordon (PMCG) model it can be shown that the δ18Ohemicellulose values correlate highly significantly with modeled δ18Oleaf water values (r = 0.81, p < 0.001, n = 20). This finding suggests that hemicellulose biomarkers in (paleo-)soils do not simply reflect δ18Oprec but rather δ18Oprec altered by evaporative 18O enrichment of leaf water due to evapotranspiration. According to the modeling results, evaporative 18O enrichment of leaf water is relatively low (∼10‰) in the humid northern part of the Argentinian transect and much higher (up to 19‰) in the arid middle and southern part of the transect. Model sensitivity tests corroborate that changes in relative air humidity exert a dominant control on evaporative 18O enrichment of leaf water and thus δ18Ohemicellulose, whereas the effect of temperature changes is of minor importance. While oxygen exchange and degradation effects seem to be negligible, further factors needing consideration when interpreting δ18Ohemicellulose values obtained from (paleo-)soils are evaporative 18O enrichment of soil water, seasonality effects, wind effects and in case of abundant stem/root-derived organic matter input a partial loss of the evaporative 18O enrichment of leaf water. Overall, our results prove that compound-specific δ18O analyses of hemicellulose biomarkers in soils and sediments are a promising tool for paleoclimate research. However, disentangling the two major factors influencing δ18Ohemicellulose, namely δ18Oprec and relative air humidity controlled evaporative 18O enrichment of leaf water, is challenging based on δ18O analyses alone.