895 resultados para Other Computer Engineering


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Antecedentes: Esta investigación se enmarca principalmente en la replicación y secundariamente en la síntesis de experimentos en Ingeniería de Software (IS). Para poder replicar, es necesario disponer de todos los detalles del experimento original. Sin embargo, la descripción de los experimentos es habitualmente incompleta debido a la existencia de conocimiento tácito y a la existencia de otros problemas tales como: La carencia de un formato estándar de reporte, la inexistencia de herramientas que den soporte a la generación de reportes experimentales, etc. Esto provoca que no se pueda reproducir fielmente el experimento original. Esta problemática limita considerablemente la capacidad de los experimentadores para llevar a cabo replicaciones y por ende síntesis de experimentos. Objetivo: La investigación tiene como objetivo formalizar el proceso experimental en IS, de modo que facilite la comunicación de información entre experimentadores. Contexto: El presente trabajo de tesis doctoral ha sido desarrollado en el seno del Grupo de Investigación en Ingeniería del Software Empírica (GrISE) perteneciente a la Escuela Técnica Superior de Ingenieros Informáticos (ETSIINF) de la Universidad Politécnica de Madrid (UPM), como parte del proyecto TIN2011-23216 denominado “Tecnologías para la Replicación y Síntesis de Experimentos en Ingeniería de Software”, el cual es financiado por el Gobierno de España. El grupo GrISE cumple a la perfección con los requisitos necesarios (familia de experimentos establecida, con al menos tres líneas experimentales y una amplia experiencia en replicaciones (16 replicaciones hasta 2011 en la línea de técnicas de pruebas de software)) y ofrece las condiciones para que la investigación se lleve a cabo de la mejor manera, como por ejemplo, el acceso total a su información. Método de Investigación: Para cumplir este objetivo se opta por Action Research (AR) como el método de investigación más adecuado a las características de la investigación, para obtener resultados a través de aproximaciones sucesivas que abordan los problemas concretos de comunicación entre experimentadores. Resultados: Se formalizó el modelo conceptual del ciclo experimental desde la perspectiva de los 3 roles principales que representan los experimentadores en el proceso experimental, siendo estos: Gestor de la Investigación (GI), Gestor del Experimento (GE) y Experimentador Senior (ES). Por otra parte, se formalizó el modelo del ciclo experimental, a través de: Un workflow del ciclo y un diagrama de procesos. Paralelamente a la formalización del proceso experimental en IS, se desarrolló ISRE (de las siglas en inglés Infrastructure for Sharing and Replicating Experiments), una prueba de concepto de entorno de soporte a la experimentación en IS. Finalmente, se plantearon guías para el desarrollo de entornos de soporte a la experimentación en IS, en base al estudio de las características principales y comunes de los modelos de las herramientas de soporte a la experimentación en distintas disciplinas experimentales. Conclusiones: La principal contribución de la investigación esta representada por la formalización del proceso experimental en IS. Los modelos que representan la formalización del ciclo experimental, así como la herramienta ISRE, construida a modo de evaluación de los modelos, fueron encontrados satisfactorios por los experimentadores del GrISE. Para consolidar la validez de la formalización, consideramos que este estudio debería ser replicado en otros grupos de investigación representativos en la comunidad de la IS experimental. Futuras Líneas de Investigación: El cumplimiento de los objetivos, de la mano con los hallazgos alcanzados, han dado paso a nuevas líneas de investigación, las cuales son las siguientes: (1) Considerar la construcción de un mecanismo para facilitar el proceso de hacer explícito el conocimiento tácito de los experimentadores por si mismos de forma colaborativa y basados en el debate y el consenso , (2) Continuar la investigación empírica en el mismo grupo de investigación hasta cubrir completamente el ciclo experimental (por ejemplo: experimentos nuevos, síntesis de resultados, etc.), (3) Replicar el proceso de investigación en otros grupos de investigación en ISE, y (4) Renovar la tecnología de la prueba de concepto, tal que responda a las restricciones y necesidades de un entorno real de investigación. ABSTRACT Background: This research addresses first and foremost the replication and also the synthesis of software engineering (SE) experiments. Replication is impossible without access to all the details of the original experiment. But the description of experiments is usually incomplete because knowledge is tacit, there is no standard reporting format or there are hardly any tools to support the generation of experimental reports, etc. This means that the original experiment cannot be reproduced exactly. These issues place considerable constraints on experimenters’ options for carrying out replications and ultimately synthesizing experiments. Aim: The aim of the research is to formalize the SE experimental process in order to facilitate information communication among experimenters. Context: This PhD research was developed within the empirical software engineering research group (GrISE) at the Universidad Politécnica de Madrid (UPM)’s School of Computer Engineering (ETSIINF) as part of project TIN2011-23216 entitled “Technologies for Software Engineering Experiment Replication and Synthesis”, which was funded by the Spanish Government. The GrISE research group fulfils all the requirements (established family of experiments with at least three experimental lines and lengthy replication experience (16 replications prior to 2011 in the software testing techniques line)) and provides favourable conditions for the research to be conducted in the best possible way, like, for example, full access to information. Research Method: We opted for action research (AR) as the research method best suited to the characteristics of the investigation. Results were generated successive rounds of AR addressing specific communication problems among experimenters. Results: The conceptual model of the experimental cycle was formalized from the viewpoint of three key roles representing experimenters in the experimental process. They were: research manager, experiment manager and senior experimenter. The model of the experimental cycle was formalized by means of a workflow and a process diagram. In tandem with the formalization of the SE experimental process, infrastructure for sharing and replicating experiments (ISRE) was developed. ISRE is a proof of concept of a SE experimentation support environment. Finally, guidelines for developing SE experimentation support environments were designed based on the study of the key features that the models of experimentation support tools for different experimental disciplines had in common. Conclusions: The key contribution of this research is the formalization of the SE experimental process. GrISE experimenters were satisfied with both the models representing the formalization of the experimental cycle and the ISRE tool built in order to evaluate the models. In order to further validate the formalization, this study should be replicated at other research groups representative of the experimental SE community. Future Research Lines: The achievement of the aims and the resulting findings have led to new research lines, which are as follows: (1) assess the feasibility of building a mechanism to help experimenters collaboratively specify tacit knowledge based on debate and consensus, (2) continue empirical research at the same research group in order to cover the remainder of the experimental cycle (for example, new experiments, results synthesis, etc.), (3) replicate the research process at other ESE research groups, and (4) update the tools of the proof of concept in order to meet the constraints and needs of a real research environment.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The new degrees in Spanish universities generated as a result of the Bologna process, stress a new dimension: the generic competencies to be acquired by university students (leadership, problem solving, respect for the environment, etc.). At Universidad Polite¿cnica de Madrid a teaching model was defined for two degrees: Graduate in Computer Engineering and Graduate in Software Engineering. Such model incorporates the training, development and assessment of generic competencies planned in these curricula. The aim of this paper is to describe how this model was implemented in both degrees. The model has three components. The first refers to a set of seven activities for introducing mechanisms for training, development and assessment of generic competencies. The second component aims to coordinate actions that implement the competencies across courses (in space and time). The third component consists of a series of activities to perform quality control. The implementation of generic competencies was carried out in first year courses (first and second semesters), together with the planning for second year courses (third and fourth semesters). We managed to involve a high percentage of first-year courses (80%) and the contacts that have been initiated suggest a high percentage in the second year as well.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In today's internet world, web browsers are an integral part of our day-to-day activities. Therefore, web browser security is a serious concern for all of us. Browsers can be breached in different ways. Because of the over privileged access, extensions are responsible for many security issues. Browser vendors try to keep safe extensions in their official extension galleries. However, their security control measures are not always effective and adequate. The distribution of unsafe extensions through different social engineering techniques is also a very common practice. Therefore, before installation, users should thoroughly analyze the security of browser extensions. Extensions are not only available for desktop browsers, but many mobile browsers, for example, Firefox for Android and UC browser for Android, are also furnished with extension features. Mobile devices have various resource constraints in terms of computational capabilities, power, network bandwidth, etc. Hence, conventional extension security analysis techniques cannot be efficiently used by end users to examine mobile browser extension security issues. To overcome the inadequacies of the existing approaches, we propose CLOUBEX, a CLOUd-based security analysis framework for both desktop and mobile Browser EXtensions. This framework uses a client-server architecture model. In this framework, compute-intensive security analysis tasks are generally executed in a high-speed computing server hosted in a cloud environment. CLOUBEX is also enriched with a number of essential features, such as client-side analysis, requirements-driven analysis, high performance, and dynamic decision making. At present, the Firefox extension ecosystem is most susceptible to different security attacks. Hence, the framework is implemented for the security analysis of the Firefox desktop and Firefox for Android mobile browser extensions. A static taint analysis is used to identify malicious information flows in the Firefox extensions. In CLOUBEX, there are three analysis modes. A dynamic decision making algorithm assists us to select the best option based on some important parameters, such as the processing speed of a client device and network connection speed. Using the best analysis mode, performance and power consumption are improved significantly. In the future, this framework can be leveraged for the security analysis of other desktop and mobile browser extensions, too.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Navigation devices used to be bulky and expensive and were not widely commercialized for personal use. Nowadays, all useful electronic devices are turning into being handheld so that they can be conveniently used anytime and anywhere. One can claim that almost any mobile phone, used today, has quite strong navigational capabilities that can efficiently work anywhere in the globe. No matter where you are, you can easily know your exact location and make your way smoothly to wherever you would like to go. This couldn’t have been made possible without the existence of efficient and small microwave circuits responsible for the transmission and reception of high quality navigation signals. This thesis is mainly concerned with the design of novel highly miniaturized and efficient filtering components working in the Global Navigational Satellite Systems (GNSS) frequency band to be integrated within an efficient Radio Frequency (RF) front-end module (FEM). A System-on-Package (SoP) integration technique is adopted for the design of all the components in this thesis. Two novel miniaturized filters are designed, where one of them is a wideband filter targeting the complete GNSS band with a fractional bandwidth of almost 50% at a center frequency of 1.385 GHz. This filter utilizes a direct inductive coupling topology to achieve the required wide band performance. It also has very good out-of-band rejection and low IL. Whereas the other dual band filter will only cover the lower and upper GNSS bands with a rejection notch in between the two bands. It has very good inter band rejection. The well-known “divide and conquer” design methodology was applied for the design of this filter to help save valuable design and optimization time. Moreover, the performance of two commercially available ultra-Low Noise Amplifiers (LNAs) is studied. The complete RF FEM showed promising preliminary performance in terms of noise figure, gain and bandwidth, where it out performed other commercial front-ends in these three aspects. All the designed circuits are fabricated and tested. The measured results are found to be in good agreements with the simulations.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The electric vehicle (EV) market has seen a rapid growth in the recent past. With an increase in the number of electric vehicles on road, there is an increase in the number of high capacity battery banks interfacing the grid. The battery bank of an EV, besides being the fuel tank, is also a huge energy storage unit. Presently, it is used only when the vehicle is being driven and remains idle for rest of the time, rendering it underutilized. Whereas on the other hand, there is a need of large energy storage units in the grid to filter out the fluctuations of supply and demand during a day. EVs can help bridge this gap. The EV battery bank can be used to store the excess energy from the grid to vehicle (G2V) or supply stored energy from the vehicle to grid (V2G ), when required. To let power flow happen, in both directions, a bidirectional AC-DC converter is required. This thesis concentrates on the bidirectional AC-DC converters which have a control on power flow in all four quadrants for the application of EV battery interfacing with the grid. This thesis presents a bidirectional interleaved full bridge converter topology. This helps in increasing the power processing and current handling capability of the converter which makes it suitable for the purpose of EVs. Further, the benefit of using the interleaved topology is that it increases the power density of the converter. This ensures optimization of space usage with the same power handling capacity. The proposed interleaved converter consists of two full bridges. The corresponding gate pulses of each switch, in one cell, are phase shifted by 180 degrees from those of the other cell. The proposed converter control is based on the one-cycle controller. To meet the challenge of new requirements of reactive power handling capabilities for grid connected converters, posed by the utilities, the controller is modified to make it suitable to process the reactive power. A fictitious current derived from the grid voltage is introduced in the controller, which controls the converter performance. The current references are generated using the second order generalized integrators (SOGI) and phase locked loop (PLL). A digital implementation of the proposed control ii scheme is developed and implemented using DSP hardware. The simulated and experimental results, based on the converter topology and control technique discussed here, are presented to show the performance of the proposed theory.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

"Supported in part by the Advanced Research Projects Agency ... under Contract no. US AF 30(602) 4144."

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Thesis--University of Illinois.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

"1-10-1955"

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Thesis (M.S.)--University of Illinois.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

"NSF workshop."--Cover.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper, we investigate the effects of various potential models in the description of vapor–liquid equilibria (VLE) and adsorption of simple gases on highly graphitized thermal carbon black. It is found that some potential models proposed in the literature are not suitable for the description of VLE (saturated gas and liquid densities and the vapor pressure with temperature). Simple gases, such as neon, argon, krypton, xenon, nitrogen, and methane are studied in this paper. To describe the isotherms on graphitized thermal carbon black correctly, the surface mediation damping factor introduced in our recent publication should be used to calculate correctly the fluid–fluid interaction energy between particles close to the surface. It is found that the damping constant for the noble gases family is linearly dependent on the polarizability, suggesting that the electric field of the graphite surface has a direct induction effect on the induced dipole of these molecules. As a result of this polarization by the graphite surface, the fluid–fluid interaction energy is reduced whenever two particles are near the surface. In the case of methane, we found that the damping constant is less than that of a noble gas having the similar polarizability, while in the case of nitrogen the damping factor is much greater and this could most likely be due to the quadrupolar nature of nitrogen.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper we apply a new method for the determination of surface area of carbonaceous materials, using the local surface excess isotherms obtained from the Grand Canonical Monte Carlo simulation and a concept of area distribution in terms of energy well-depth of solid–fluid interaction. The range of this well-depth considered in our GCMC simulation is from 10 to 100 K, which is wide enough to cover all carbon surfaces that we dealt with (for comparison, the well-depth for perfect graphite surface is about 58 K). Having the set of local surface excess isotherms and the differential area distribution, the overall adsorption isotherm can be obtained in an integral form. Thus, given the experimental data of nitrogen or argon adsorption on a carbon material, the differential area distribution can be obtained from the inversion process, using the regularization method. The total surface area is then obtained as the area of this distribution. We test this approach with a number of data in the literature, and compare our GCMC-surface area with that obtained from the classical BET method. In general, we find that the difference between these two surface areas is about 10%, indicating the need to reliably determine the surface area with a very consistent method. We, therefore, suggest the approach of this paper as an alternative to the BET method because of the long-recognized unrealistic assumptions used in the BET theory. Beside the surface area obtained by this method, it also provides information about the differential area distribution versus the well-depth. This information could be used as a microscopic finger-print of the carbon surface. It is expected that samples prepared from different precursors and different activation conditions will have distinct finger-prints. We illustrate this with Cabot BP120, 280 and 460 samples, and the differential area distributions obtained from the adsorption of argon at 77 K and nitrogen also at 77 K have exactly the same patterns, suggesting the characteristics of this carbon.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Soft tissue engineering presents significant challenges compared to other tissue engineering disciplines such as bone, cartilage or skin engineering. The very high cell density in most soft tissues, often combined with large implant dimensions, means that the supply of oxygen is a critical factor in the success or failure of a soft tissue scaffold. A model is presented for oxygen diffusion in a 15-60 mm diameter dome-shaped scaffold fed by a blood vessel loop at its base. This model incorporates simple models for vascular growth, cell migration and the effect of cell density on the effective oxygen diffusivity. The model shows that the dynamic, homogeneous cell seeding method often employed in small-scale applications is not applicable in the case of larger scale scaffolds such as these. Instead, we propose the implantation of a small biopsy of tissue close to a blood supply within the scaffold as a technique more likely to be successful. Crown Copyright (c) 2005 Published by Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper, we investigate the suitability of the grand canonical Monte Carlo in the description of adsorption equilibria of flexible n-alkane (butane, pentane and hexane) on graphitized thermal carbon black. Potential model of n-alkane of Martin and Siepmann (J. Phys. Chem. 102 (1998) 2569) is employed in the simulation, and we consider the flexibility of molecule in the simulation. By this we study two models, one is the fully flexible molecular model in which n-alkane is subject to bending and torsion, while the other is the rigid molecular model in which all carbon atoms reside on the same plane. It is found that (i) the adsorption isotherm results of these two models are close to each other, suggesting that n-alkane model behaves mostly as rigid molecules with respect to adsorption although the isotherm for longer chain n-hexane is better described by the flexible molecular model (ii) the isotherms agree very well with the experimental data at least up to two layers on the surface.

Relevância:

90.00% 90.00%

Publicador: