966 resultados para Orthocladiinae, Patagonia, phylogenetics, phylogeography, population genetics, population isolation, rainforest contraction, refugia, tectonic uplift, vicariance


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Wet Tropics bioregion of north-eastern Australia has been subject to extensive fluctuations in climate throughout the late Pliocene and Pleistocene. Cycles of rainforest contraction and expansion of dry sclerophyll forest associated with such climatic fluctuations are postulated to have played a major role in driving geographical endemism in terrestrial rainforest taxa. Consequences for the distributions of aquatic organisms, however, are poorly understood.The Australian non-biting midge species Echinocladius martini Cranston (Diptera: Chironomidae), although restricted to cool, well-forested freshwater streams, has been considered to be able to disperse among populations located in isolated rainforest pockets during periods of sclerophyllous forest expansion, potentially limiting the effect of climatic fluctuations on patterns of endemism. In this study, mitochondrial COI and 16S data were analysed for E. martini collected from eight sites spanning theWet Tropics bioregion to assess the scale and extent of phylogeographic structure. Analyses of genetic structure showed several highly divergent cryptic lineages with restricted geographical distributions. Within one of the identified lineages, strong genetic structure implied that dispersal among proximate (<1 km apart) streams was extremely restricted. The results suggest that vicariant processes, most likely due to the systemic drying of the Australian continent during the Plio-Pleistocene, might have fragmented historical E. martini populations and, hence, promoted divergence in allopatry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Milula, a monotypic genus endemic to the Qinghai-Tibetan Plateau, was found to be nested deeply within Allium by the molecular phylogeny despite the aberrant morphology. It remains unknown what had contributed to the rapid evolution of morphology and origin of this exceptional species. In contrast to a previous report of its karyotypes with 2n = 16 = 8M+8SM (2SAT), similar to most species of Allium, a rather different karyotype, 2n = 20 = 4M +10SM+6T (2SAT), was found in examined 31 individuals from 6 populations of M. spicata distributed in the central Tibet. Karyotypes of 7 Allium species occurring in the Qinghai-Tibetan Plateau were further reported. The basic number x = 8 was confirmed for all of them and their karyotypes consist mainly of metacentric and submetacentric chromosomes with rare subterminal and terminal chromosomes. The karyotype of M. spicata is distinctly different from that of most Allium species occurring in the plateau through a complete comparison of all available species in this region and adjacent areas. However, the same chromosome number and similar karyotypic structure were found in A. fasciculatum of Sect. Bromatorrhiza, indicating a possible close relationship between them. But this similarity is contradictory to the preliminary molecular phylogenetic analysis that Milula was closely related to A. cyathophorum of Sect. Bromatorrhiza with x=8, but the other species with x=10 and 11 in this section were clearly placed in the other clade. We therefore suggested that the paralleling evolution from x=8 to x=9, 10 and 11 with increasing asymmetry of karyotype possibly due to the chromosomal Robertsonian translocation might occur separately in the two recognized phylogenetic lineages of Allium. In addition to aneuploidy and following change of the chromosomal structures, the habitat isolation due to the recent uplift of the Qinghai-Tibetan Plateau and the Quaternary climatic oscillation, plays a greater role in origin of Milula and other endemic species (genera) with aberrant morphology from their progenitors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Precise relative sea level (RSL) data are important for inferring regional ice sheet histories, as well as helping to validate numerical models of ice sheet evolution and glacial isostatic adjustment. Here we develop a new RSL curve for Fildes Peninsula, South Shetland Islands (SSIs), a sub-Antarctic archipelago peripheral to the northern Antarctic Peninsula ice sheet, by integrating sedimentary evidence from isolation basins with geomorphological evidence from raised beaches. This combined approach yields not only a Holocene RSL curve, but also the spatial pattern of how RSL change varied across the archipelago. The curve shows a mid-Holocene RSL highstand on Fildes Peninsula at 15.5 m above mean sea level between 8000 and 7000 cal a BP. Subsequently RSL gradually fell as a consequence of isostatic uplift in response to regional deglaciation. We propose that isostatic uplift occurred at a non-steady rate, with a temporary pause in ice retreat ca. 7200 cal a BP, leading to a short-lived RSL rise of ~1 m and forming a second peak to the mid-Holocene highstand. Two independent approaches were taken to constrain the long-term tectonic uplift rate of the SSIs at 0.22-0.48 m/ka, placing the tectonic contribution to the reconstructed RSL highstand between 1.4 and 2.9 m. Finally, we make comparisons to predictions from three global sea level models.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The ongoing climate change along with increasing levels of pollutants, diseases, habitat loss and fragmentation constitute global threats to the persistence of many populations, species and ecosystems. However, for the long-term persistence of local populations, one of the biggest threats is the intrinsic loss of genetic variation. In order to adapt to changes in the environment, organisms must have a sufficient supply of heritable variation in traits important for their fitness. With a loss of genetic variation, the risk of extinction will increase. For conservational practices, one should therefore understand the processes that shape the genetic population structure and also the broader (historical) phylogenetic patterning of the species in focus. In this thesis, microsatellite markers were applied to study genetic diversity and population differentiation of the protected moor frog (Rana arvalis) in Fennoscandia from both historical (evolutionary) and applied (conservation) perspectives. The results demonstrate that R. arvalis populations are highly structured over rather short geographic distances. Moreover, the results suggest that R. arvalis recolonized Fennoscandia from two directions after the last ice age. This has had implications for the genetic structuring and population differentiation, especially in the northernmost parts where the two lineages have met. Compared to more southern populations, the genetic variation decreases and the interpopulation differentiation increases dramatically towards north. This could be an outcome of serial population bottlenecking along the recolonization route. Also, current isolation and small population sizes increase the effect of drift, thus reinforcing the observed pattern. The same pattern can also be seen in island populations. However, though R. arvalis on the island of Gotland has lost most of its neutral genetic variability, our results indicate that the levels of additive genetic variation have remained high. This conforms to the conjecture that though neutral markers are widely used in conservation purposes, they may be quite uninformative about the levels of genetic variation in ecologically important traits. Finally, the evolutionary impact of the typical amphibian mating behaviour on genetic diversity was investigated. Given the short time available for larval development, it is important that mating takes place as early as possible. The genetic data and earlier capture-recapture data suggest that R. arvalis gather at mating grounds they are familiar with. However, by forming leks in random to relatedness, and having multiple paternities in single clutches, the risk of inbreeding may be minimized in this otherwise highly philopatric species.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Thesis (Master's)--University of Washington, 2016-06

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Leptobrachium ailaonicum is a vulnerable anuran restricted to a patchy distribution associated with small mountain streams surrounded by forested slopes at mid-elevations (approximately 2000-2600 m) in the subtropical Mount Wuliang and Mount Ailao ranges in southwest China (Yunnan Province) and northern Vietnam. Given high habitat specificity and lack of suitable habitat in lower elevations between these ranges, we hypothesized limited gene flow between populations throughout its range. We used two mitochondrial genes to construct a phylogeographic pattern within this species in order to test our hypothesis. We also examined whether this phylogeographic pattern is a response to past geological events and/or climatic oscillations. A total of 1989 base pairs were obtained from 81 individuals of nine populations yielding 51 unique haplotypes. Both Bayesian and maximum parsimony phylogenetic analyses revealed four deeply divergent and reciprocally monophyletic mtDNA lineages that approximately correspond to four geographical regions separated by deep river valleys. These results suggest a long history of allopatric separation by vicariance. The distinct geographic distributions of four major clades and the estimated divergence time suggest spatial and temporal separations that coincide with climatic and paleogeographic changes following the orogeny and uplift of Mount Ailao during the late Miocene to mid Pliocene in southwest China. At the southern distribution, the presence of two sympatric yet differentiated clades in two areas are interpreted as a result of secondary contact between previously allopatric populations during cooler Pleistocene glacial cycles. Analysis of molecular variance indicates that most of the observed genetic variation occurs among the four regions implying long-term interruption of maternal gene flow, suggesting that L ailaonicum may represent more than one distinct species and should at least be separated into four management units corresponding to these four geographic lineages for conservation. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Using phylogenetic and population genetic approaches, the present study reports the phylogeographic structure of the sharp-snouted pitviper (Deinagkistrodon acutus), a threatened snake species with commercial and medicinal importance in China. The entire mitochondrial ND2 gene (NADH dehydrogenase subunit 2) sequences of 86 individuals of D. acutus from 14 localities across its range in China were determined. Based on the results of phylogenetic analyses, distribution of diagnostic sites, haplotype network, and AMOVA hierarchical analysis, an cast-west division of the whole D. acutus population could be observed. Geographically, a line formed by a lake, river, and mountain chain (the Poyang Lake, Gan River to the southern end of the Wuyi Mountains), results in vicariance and approximately vertically splits the range into two and the whole population into two main lineages (western and eastern). The bifurcating tree suggested generally west to east dispersal trend. The data fit the isolation by distance (IBD) model well. Star-like clusters in haplotype network, significantly negative values of Fs statistics, and unimodal mismatch distributions all suggest recent demographic expansions in four areas. The results show that isolation, dispersal, bottleneck, and expansion jointly constitute the history of D. acutus. In a haplotype network, the excessive predominance of central haplotypes, few medium-frequency haplotypes, predominance (73.1 %) of the singletons among the derived haplotypes, most of which are connected to the central haplotype by only one mutational step, unsymmetrical campanulate unimodal curve of mismatch distributions and leftwards shift of the peaks, all suggest that the whole D. acutus population is a young population with low genetic diversity. Based on the data, the first priority for conservation action should be given to the Huangshan unit. (c) 2007 Elsevier Inc. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Crassostrea ariakensis is an important aquacultured oyster species in Asia, its native region. During the past decade, consideration was given to introducing C. ariakensis into Chesapeake Bay, in the United States, to help revive the declining native oyster industry and bolster the local ecosystem. Little is known about the ecology and biology of this species in Asia due to confusion with nomenclature and difficulty in accurately identifying the species of wild populations in their natural environment. Even less research has been done on the population genetics of native populations of C. ariakensis in Asia. We examined the magnitude and pattern of genetic differentiation among 10 wild populations of C. ariakensis from its confirmed distribution range using eight polymorphic microsatellite markers. Results showed a small but significant global theta (ST) (0.018), indicating genetic heterogeneity among populations. Eight genetically distinct populations were further distinguished based on population pairwise theta (ST) comparisons, including one in Japan, four in China, and three populations along the coast of South Korea. A significant positive association was detected between genetic and geographic distances among populations, suggesting a genetic pattern of isolation by distance. This research represents a novel observation on wild genetic population structuring in a coastal bivalve species along the coast of the northwest Pacific.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Tese de doutoramento, Biologia (Biologia da Conservação), Universidade de Lisboa, Faculdade de Ciências, 2015

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Southern Australia is currently divided into three marine biogeographical provinces based on faunal distributions and physical parameters. These regions indicate eastern and western distributions, with an overlap occurring in the Bass Strait in Victoria. However, studies indicate that the boundaries of these provinces vary depending on the species being examined, and in particular on the mode of development employed by that species, be they direct developers or planktonic larvae dispersers. Mitochondrial DNA sequence analysis of the surf barnacle Catomerus polymerus in southern Australia revealed an east–west phylogeographical split involving two highly divergent clades (cytochrome oxidase I 3.5 ± 0.76%, control region 6.7 ± 0.65%), with almost no geographical overlap. Spatial genetic structure was not detected within either clade, indicative of a relatively long-lived planktonic larval phase. Five microsatellite loci indicated that C. polymerus populations exhibit relatively high levels of genetic divergence, and fall into four subregions: eastern Australia, central Victoria, western Victoria and Tasmania, and South Australia. FST values between eastern Australia (from the eastern mitochondrial DNA clade) and the remaining three subregions ranged from 0.038 to 0.159, with other analyses indicating isolation by distance between the subregions of western mitochondrial origin. We suggest that the east–west division is indicative of allopatric divergence resulting from the emergence of the Bassian land-bridge during glacial maxima, preventing gene flow between these two lineages. Subsequently, contemporary ecological conditions, namely the East Australian, Leeuwin, and Zeehan currents and the geographical disjunctions at the Coorong and Ninety Mile Beach are most likely responsible for the four subregions indicated by the microsatellite data.