910 resultados para Ordered probit regression
Resumo:
My dissertation consists of three essays. The central theme of these essays is the psychological factors and biases that affect the portfolio allocation decision. The first essay entitled, “Are women more risk-averse than men?” examines the gender difference in risk aversion as revealed by actual investment choices. Using a sample that controls for biases in the level of education and finance knowledge, there is evidence that when individuals have the same level of education, irrespective of their knowledge of finance, women are no more risk-averse than their male counterparts. However, the gender-risk aversion relation is also a function of age, income, wealth, marital status, race/ethnicity and the number of children in the household. The second essay entitled, “Can diversification be learned?” investigates if investors who have superior investment knowledge are more likely to actively seek diversification benefits and are less prone to allocation biases. Results of cross-sectional analyses suggest that knowledge of finance increases the likelihood that an investor will efficiently allocate his direct investments across the major asset classes; invest in foreign assets; and hold a diversified equity portfolio. However, there is no evidence that investors who are more financially sophisticated make superior allocation decisions in their retirement savings. The final essay entitled, “The demographics of non-participation”, examines the factors that affect the decision not to hold stocks. The results of probit regression models indicate that when individuals are highly educated, the decision to not participate in the stock market is less related to demographic factors. In particular, when individuals have attained at least a college degree and have advanced knowledge of finance, they are significantly more likely to invest in equities either directly or indirectly through mutual funds or their retirement savings. There is also evidence that the decision not to hold stocks is motivated by short-term market expectations and the most recent investment experience. The findings of these essays should increase the body of research that seeks to reconcile what investors actually do (positive theory) with what traditional theories of finance predict that investors should do (normative theory).
Resumo:
The aim of this thesis is to identify the relationship between subjective well-being and economic insecurity for public and private sector workers in Ireland using the European Social Survey 2010-2012. Life satisfaction and job satisfaction are the indicators used to measure subjective well-being. Economic insecurity is approximated by regional unemployment rates and self-perceived job insecurity. Potential sample selection bias and endogeneity bias are accounted for. It is traditionally believed that public sector workers are relatively more protected against insecurity due to very institution of public sector employment. The institution of public sector employment is made up of stricter dismissal practices (Luechinger et al., 2010a) and less volatile employment (Freeman, 1987) where workers are subsequently less likely to be affected by business cycle downturns (Clark and Postal-Vinay, 2009). It is found in the literature that economic insecurity depresses the well-being of public sector workers to a lesser degree than private sector workers (Luechinger et al., 2010a; Artz and Kaya, 2014). These studies provide the rationale for this thesis in testing for similar relationships in an Irish context. Sample selection bias arises when a selection into a particular category is not random (Heckman, 1979). An example of this is non-random selection into public sector employment based on personal characteristics (Heckman, 1979; Luechinger et al., 2010b). If selection into public sector employment is not corrected for this can lead to biased and inconsistent estimators (Gujarati, 2009). Selection bias of public sector employment is corrected for by using a standard Two-Step Heckman Probit OLS estimation method. Following Luechinger et al. (2010b), the propensity for individuals to select into public sector employment is estimated by a binomial probit model with the inclusion of the additional regressor Irish citizenship. Job satisfaction is then estimated by Ordinary Least Squares (OLS) with the inclusion of a sample correction term similar as is done in Clark (1997). Endogeneity is where an independent variable included in the model is determined within in the context of the model (Chenhall and Moers, 2007). The econometric definition states that an endogenous independent variable is one that is correlated with the error term (Wooldridge, 2010). Endogeneity is expected to be present due to a simultaneous relationship between job insecurity and job satisfaction whereby both variables are jointly determined (Theodossiou and Vasileiou, 2007). Simultaneity, as an instigator of endogeneity, is corrected for using Instrumental Variables (IV) techniques. Limited Information Methods and Full Information Methods of estimation of simultaneous equations models are assed and compared. The general results show that job insecurity depresses the subjective well-being of all workers in both the public and private sectors in Ireland. The magnitude of this effect differs among sectoral workers. The subjective well-being of private sector workers is more adversely affected by job insecurity than the subjective well-being of public sector workers. This is observed in basic ordered probit estimations of both a life satisfaction equation and a job satisfaction equation. The marginal effects from the ordered probit estimation of a basic job satisfaction equation show that as job insecurity increases the probability of reporting a 9 on a 10-point job satisfaction scale significantly decreases by 3.4% for the whole sample of workers, 2.8% for public sector workers and 4.0% for private sector workers. Artz and Kaya (2014) explain that as a result of many austerity policies implemented to reduce government expenditure during the economic recession, workers in the public sector may for the first time face worsening perceptions of job security which can have significant implications for their well-being (Artz and Kaya, 2014). This can be observed in the marginal effects where job insecurity negatively impacts the well-being of public sector workers in Ireland. However, in accordance with Luechinger et al. (2010a) the results show that private sector workers are more adversely impacted by economic insecurity than public sector workers. This suggests that in a time of high economic volatility, the institution of public sector employment held and was able to protect workers against some of the well-being consequences of rising insecurity. In estimating the relationship between subjective well-being and economic insecurity advanced econometric issues arise. The results show that when selection bias is corrected for, any statistically significant relationship between job insecurity and job satisfaction disappears for public sector workers. Additionally, in order to correct for endogeneity bias the simultaneous equations model for job satisfaction and job insecurity is estimated by Limited Information and Full Information Methods. The results from two different estimators classified as Limited Information Methods support the general findings of this research. Moreover, the magnitude of the endogeneity-corrected estimates are twice as large as those not corrected for endogeneity bias which is similarly found in Geishecker (2010, 2012). As part of the analysis into the effect of economic insecurity on subjective well-being, the effects of other socioeconomic variables and work-related variables are examined for public and private sector workers in Ireland.
Resumo:
Colombia ha sido un país con una larga historia de violencia y corrupción, por lo que se hace importante analizar la relación entre la victimización de dichos delitos sufrida por los individuos y su percepción de satisfacción con la vida. Se utiliza información entre 2004 y 2014 contenida en LAPOP, a manera de secciones transversales repetidas. Con el fin de encontrar dicho efecto, se estima robustamente un modelo probabilístico ordenado, en donde los resultados sugieren que la victimización del último año reduce en 6.7 puntos porcentuales la probabilidad de sentirse muy satisfecho con la vida y el haber sido víctima de algún soborno en 5 puntos porcentuales.
Resumo:
The agro-climatic conditions in western Kenya present the region as a food surplus area yet people are still reliant on food imports, with the region registering high poverty levels. Depletion of soil fertility and the resulting decline in agricultural productivity in Mbale division has led to many attempts to develop and popularize Integrated Soil Fertility Management (ISFM) technologies that could restore soil fertility. These technologies bridge the gap between high external inputs and extreme forms of traditional low external input agriculture. Some of the ISFM components used by farmers are organic and inorganic inputs and improved seeds. However, the adoption of these technologies is low. The study aimed to examine the factors that influence the adoption of ISFM technologies by smallholder farmers in Mbale division, Kenya. The study was conducted in 9 sub-locations in Mbale division. Purposive sampling was used in selecting the 80 farmers to get the data based on a farm-household survey. Self-administered questionnaires were used to collect data on the determinants of the adoption of ISFM technologies from the sampled farmers in the study area. The study sought to answer the research question: What factors influence the uptake of ISFM technologies by farmers in Mbale division? The hypothesis tested was that the adoption of ISFM technologies is not influenced by age, education, extension services, labour, off-farm income and farm size. Data was analyzed using descriptive statistics. Cross tabulation was used for examining the relationship between categorical (nominal or ordinal) variables, and the bivariate correlations procedure was used to compute the pair wise associations between scale or ordinal variables. Probit regression was used to predict the socio-economic factors influencing the adoption of ISFM technologies among smallholder farmers. Results of the study indicated that education of household head, membership in social groups, age of the household head, off-farm income and farm size were the variables that significantly influenced the adoption of ISFM technologies. The findings show that there is need for a more pro-poor focused approach to achieve sustainable soil fertility management among smallholder farmers. The findings will help farmers, extension officers, researchers and donors in identifying region-specific entry points that can help in developing innovative ISFM technologies.
Resumo:
La presente investigación tiene como objetivo principal determinar la existencia de una relación de causalidad entre Fecundidad y Pobreza en el Ecuador a partir del análisis de datos provinciales para los años 2006 y 2014. Para evaluar la relación de estas variables, se hizo uso de dos modelos econométricos: el Modelo de Regresión Poisson para evaluar el impacto de la Pobreza sobre la Fecundidad; y el Modelo de Regresión Probit para analizar el impacto que tiene la Fecundidad sobre la pobreza. Los modelos mencionados fueron estimados para un total de 13.580 hogares en el año 2006 y 28.399 hogares en el año 2014, datos que fueron obtenidos a partir de la cuarta y quinta versión de la Encuesta de Condiciones de Vida del Ecuador (ECV) realizadas por el INEC. Se encontró una fuerte relación positiva entre las variables mencionadas en ambos años de estudio, sin embargo,debido a la falta de información y a la estructuración de la base de datos empleada no se pudo determinar de forma precisa la existencia de una relación causal entre ambas variables. A pesar de no haberse determinado la dirección de la causalidad es importante mencionar que la influencia que ejerce la Pobreza sobre los niveles de Fecundidad en el Ecuador es mucho mayor a la que se encontró al analizar el impacto que tiene la Fecundidad sobre la Pobreza, es decir, elevados niveles de pobreza causan un mayor número de hijos en los hogares.
Resumo:
Purpose – The focus of this research is to find out a meaningful relationship between adopting sustainability practices and some of the characteristics of institutions of higher education (IHE). IHE can be considered as the best place to promote sustainability and develop the culture of sustainability in society. Thus, this research is conducted to help developing sustainability in IHE which have significant direct and indirect impact on society and the environment. Design/methodology/approach – First, the sustainability letter grades were derived from “Greenreportcard.org” which have been produced based on an evaluation of each school in nine main categories including: Administration, Climate Change & Energy, Food & Recycling, etc. In the next step, the characteristics of IHE as explanatory variables were chosen from “The Integrated Postsecondary Education Data System” (IPEDS) and respective database was implemented in STATA Software. Finally, the “ordered-Probit Model” is used through STATA to analyze the impact of some IHE’s factor on adopting sustainability practices on campus. Finding - The results of this analysis indicate that variables related to “Financial support” category are the most influential factors in determining the sustainability status of the university. “The university features” with two significant variables for “Selectivity” and “Top 50 LA” can be classified as the second influential category in this table, although the “Student influence” is also eligible to be ranked as the second important factor. Finally, the “Location feature” of university was determined with the least influential impact on the sustainability of campuses. Originality/value – Understanding the factors which influence adopting sustainability practices in IHE is an important issue to develop more effective sustainability’s methods and policies.
Resumo:
We review several asymmetrical links for binary regression models and present a unified approach for two skew-probit links proposed in the literature. Moreover, under skew-probit link, conditions for the existence of the ML estimators and the posterior distribution under improper priors are established. The framework proposed here considers two sets of latent variables which are helpful to implement the Bayesian MCMC approach. A simulation study to criteria for models comparison is conducted and two applications are made. Using different Bayesian criteria we show that, for these data sets, the skew-probit links are better than alternative links proposed in the literature.
Resumo:
Model diagnostics is an integral part of model determination and an important part of the model diagnostics is residual analysis. We adapt and implement residuals considered in the literature for the probit, logistic and skew-probit links under binary regression. New latent residuals for the skew-probit link are proposed here. We have detected the presence of outliers using the residuals proposed here for different models in a simulated dataset and a real medical dataset.
Resumo:
Purpose: To determine whether curve-fitting analysis of the ranked segment distributions of topographic optic nerve head (ONH) parameters, derived using the Heidelberg Retina Tomograph (HRT), provide a more effective statistical descriptor to differentiate the normal from the glaucomatous ONH. Methods: The sample comprised of 22 normal control subjects (mean age 66.9 years; S.D. 7.8) and 22 glaucoma patients (mean age 72.1 years; S.D. 6.9) confirmed by reproducible visual field defects on the Humphrey Field Analyser. Three 10°-images of the ONH were obtained using the HRT. The mean topography image was determined and the HRT software was used to calculate the rim volume, rim area to disc area ratio, normalised rim area to disc area ratio and retinal nerve fibre cross-sectional area for each patient at 10°-sectoral intervals. The values were ranked in descending order, and each ranked-segment curve of ordered values was fitted using the least squares method. Results: There was no difference in disc area between the groups. The group mean cup-disc area ratio was significantly lower in the normal group (0.204 ± 0.16) compared with the glaucoma group (0.533 ± 0.083) (p < 0.001). The visual field indices, mean deviation and corrected pattern S.D., were significantly greater (p < 0.001) in the glaucoma group (-9.09 dB ± 3.3 and 7.91 ± 3.4, respectively) compared with the normal group (-0.15 dB ± 0.9 and 0.95 dB ± 0.8, respectively). Univariate linear regression provided the best overall fit to the ranked segment data. The equation parameters of the regression line manually applied to the normalised rim area-disc area and the rim area-disc area ratio data, correctly classified 100% of normal subjects and glaucoma patients. In this study sample, the regression analysis of ranked segment parameters method was more effective than conventional ranked segment analysis, in which glaucoma patients were misclassified in approximately 50% of cases. Further investigation in larger samples will enable the calculation of confidence intervals for normality. These reference standards will then need to be investigated for an independent sample to fully validate the technique. Conclusions: Using a curve-fitting approach to fit ranked segment curves retains information relating to the topographic nature of neural loss. Such methodology appears to overcome some of the deficiencies of conventional ranked segment analysis, and subject to validation in larger scale studies, may potentially be of clinical utility for detecting and monitoring glaucomatous damage. © 2007 The College of Optometrists.
Resumo:
The correlated probit model is frequently used for multiple ordered data since it allows to incorporate seamlessly different correlation structures. The estimation of the probit model parameters based on direct maximization of the limited information maximum likelihood is a numerically intensive procedure. We propose an extension of the EM algorithm for obtaining maximum likelihood estimates for a correlated probit model for multiple ordinal outcomes. The algorithm is implemented in the free software environment for statistical computing and graphics R. We present two simulation studies to examine the performance of the developed algorithm. We apply the model to data on 121 women with cervical or endometrial cancer. Patients developed normal tissue reactions as a result of post-operative external beam pelvic radiotherapy. In this work we focused on modeling the effects of a genetic factor on early skin and early urogenital tissue reactions and on assessing the strength of association between the two types of reactions. We established that there was an association between skin reactions and polymorphism XRCC3 codon 241 (C>T) (rs861539) and that skin and urogenital reactions were positively correlated. ACM Computing Classification System (1998): G.3.
Resumo:
This dissertation proposes statistical methods to formulate, estimate and apply complex transportation models. Two main problems are part of the analyses conducted and presented in this dissertation. The first method solves an econometric problem and is concerned with the joint estimation of models that contain both discrete and continuous decision variables. The use of ordered models along with a regression is proposed and their effectiveness is evaluated with respect to unordered models. Procedure to calculate and optimize the log-likelihood functions of both discrete-continuous approaches are derived, and difficulties associated with the estimation of unordered models explained. Numerical approximation methods based on the Genz algortithm are implemented in order to solve the multidimensional integral associated with the unordered modeling structure. The problems deriving from the lack of smoothness of the probit model around the maximum of the log-likelihood function, which makes the optimization and the calculation of standard deviations very difficult, are carefully analyzed. A methodology to perform out-of-sample validation in the context of a joint model is proposed. Comprehensive numerical experiments have been conducted on both simulated and real data. In particular, the discrete-continuous models are estimated and applied to vehicle ownership and use models on data extracted from the 2009 National Household Travel Survey. The second part of this work offers a comprehensive statistical analysis of free-flow speed distribution; the method is applied to data collected on a sample of roads in Italy. A linear mixed model that includes speed quantiles in its predictors is estimated. Results show that there is no road effect in the analysis of free-flow speeds, which is particularly important for model transferability. A very general framework to predict random effects with few observations and incomplete access to model covariates is formulated and applied to predict the distribution of free-flow speed quantiles. The speed distribution of most road sections is successfully predicted; jack-knife estimates are calculated and used to explain why some sections are poorly predicted. Eventually, this work contributes to the literature in transportation modeling by proposing econometric model formulations for discrete-continuous variables, more efficient methods for the calculation of multivariate normal probabilities, and random effects models for free-flow speed estimation that takes into account the survey design. All methods are rigorously validated on both real and simulated data.
Resumo:
The mesoporous SBA-15 silica with uniform hexagonal pore, narrow pore size distribution and tuneable pore diameter was organofunctionalized with glutaraldehyde-bridged silylating agent. The precursor and its derivative silicas were ibuprofen-loaded for controlled delivery in simulated biological fluids. The synthesized silicas were characterized by elemental analysis, infrared spectroscopy, (13)C and (29)Si solid state NMR spectroscopy, nitrogen adsorption, X-ray diffractometry, thermogravimetry and scanning electron microscopy. Surface functionalization with amine containing bridged hydrophobic structure resulted in significantly decreased surface area from 802.4 to 63.0 m(2) g(-1) and pore diameter 8.0-6.0 nm, which ultimately increased the drug-loading capacity from 18.0% up to 28.3% and a very slow release rate of ibuprofen over the period of 72.5h. The in vitro drug release demonstrated that SBA-15 presented the fastest release from 25% to 27% and SBA-15GA gave near 10% of drug release in all fluids during 72.5 h. The Korsmeyer-Peppas model better fits the release data with the Fickian diffusion mechanism and zero order kinetics for synthesized mesoporous silicas. Both pore sizes and hydrophobicity influenced the rate of the release process, indicating that the chemically modified silica can be suggested to design formulation of slow and constant release over a defined period, to avoid repeated administration.
Resumo:
In acquired immunodeficiency syndrome (AIDS) studies it is quite common to observe viral load measurements collected irregularly over time. Moreover, these measurements can be subjected to some upper and/or lower detection limits depending on the quantification assays. A complication arises when these continuous repeated measures have a heavy-tailed behavior. For such data structures, we propose a robust structure for a censored linear model based on the multivariate Student's t-distribution. To compensate for the autocorrelation existing among irregularly observed measures, a damped exponential correlation structure is employed. An efficient expectation maximization type algorithm is developed for computing the maximum likelihood estimates, obtaining as a by-product the standard errors of the fixed effects and the log-likelihood function. The proposed algorithm uses closed-form expressions at the E-step that rely on formulas for the mean and variance of a truncated multivariate Student's t-distribution. The methodology is illustrated through an application to an Human Immunodeficiency Virus-AIDS (HIV-AIDS) study and several simulation studies.
Resumo:
Conventional reflectance spectroscopy (NIRS) and hyperspectral imaging (HI) in the near-infrared region (1000-2500 nm) are evaluated and compared, using, as the case study, the determination of relevant properties related to the quality of natural rubber. Mooney viscosity (MV) and plasticity indices (PI) (PI0 - original plasticity, PI30 - plasticity after accelerated aging, and PRI - the plasticity retention index after accelerated aging) of rubber were determined using multivariate regression models. Two hundred and eighty six samples of rubber were measured using conventional and hyperspectral near-infrared imaging reflectance instruments in the range of 1000-2500 nm. The sample set was split into regression (n = 191) and external validation (n = 95) sub-sets. Three instruments were employed for data acquisition: a line scanning hyperspectral camera and two conventional FT-NIR spectrometers. Sample heterogeneity was evaluated using hyperspectral images obtained with a resolution of 150 × 150 μm and principal component analysis. The probed sample area (5 cm(2); 24,000 pixels) to achieve representativeness was found to be equivalent to the average of 6 spectra for a 1 cm diameter probing circular window of one FT-NIR instrument. The other spectrophotometer can probe the whole sample in only one measurement. The results show that the rubber properties can be determined with very similar accuracy and precision by Partial Least Square (PLS) regression models regardless of whether HI-NIR or conventional FT-NIR produce the spectral datasets. The best Root Mean Square Errors of Prediction (RMSEPs) of external validation for MV, PI0, PI30, and PRI were 4.3, 1.8, 3.4, and 5.3%, respectively. Though the quantitative results provided by the three instruments can be considered equivalent, the hyperspectral imaging instrument presents a number of advantages, being about 6 times faster than conventional bulk spectrometers, producing robust spectral data by ensuring sample representativeness, and minimizing the effect of the presence of contaminants.
Resumo:
The troglobitic armored catfish, Ancistrus cryptophthalmus (Loricariidae, Ancistrinae) is known from four caves in the São Domingos karst area, upper rio Tocantins basin, Central Brazil. These populations differ in general body shape and degree of reduction of eyes and of pigmentation. The small Passa Três population (around 1,000 individuals) presents the most reduced eyes, which are not externally visible in adults. A small group of Passa Três catfish, one male and three females, reproduced spontaneously thrice in laboratory, at the end of summertime in 2000, 2003 and 2004. Herein we describe the reproductive behavior during the 2003 event, as well as the early development of the 2003 and 2004 offsprings, with focus on body growth and ontogenetic regression of eyes. The parental care by the male, which includes defense of the rock shelter where the egg clutch is laid, cleaning and oxygenation of eggs, is typical of many loricariids. On the other hand, the slow development, including delayed eye degeneration, low body growth rates and high estimated longevity (15 years or more) are characteristic of precocial, or K-selected, life cycles. In the absence of comparable data for close epigean relatives (Ancistrus spp.), it is not possible to establish whether these features are an autapomorphic specialization of the troglobitic A. cryptophthalmus or a plesiomorphic trait already present in the epigean ancestor, possibly favoring the adoption of the life in the food-poor cave environment. We briefly discuss the current hypotheses on eye regression in troglobitic vertebrates.