986 resultados para Ordered Gene Problems
Resumo:
Gene targeting allows precise, predetermined changes to be made in a chosen gene in the mouse genome. To date, targeting has been used most often for generation of animals completely lacking the product of a gene of interest. The resulting "knockout" mice have confirmed some hypotheses, have upset others, but have rarely been uninformative. Models of several human genetic diseases have been produced by targeting--including Gaucher disease, cystic fibrosis, and the fragile X syndrome. These diseases are primarily determined by defects in single genes, and their modes of inheritance are well understood. When the disease under study has a complex etiology with multiple genetic and environmental components, the generation of animal models becomes more difficult but no less valuable. The problems associated with dissecting out the individual genetic factors also increases substantially and the distinction between causation and correlation is often difficult. To prove causation in a complex system requires rigorous adherence to the principle that the experiments must allow detection of the effects of changing only a single variable at one time. Gene targeting experiments, when properly designed, can test the effects of a precise genetic change completely free from the effects of differences in any other genes (linked or unlinked to the test gene). They therefore allow proofs of causation.
Resumo:
Errata slip inserted.
Resumo:
A low-density, male-based linkage map was constructed as one of the objectives of the International Equine Gene Mapping Workshop. Here we report the second generation map based on testing 503 half-sibling offspring from 13 sire families for 344 informative markers using the crimap program. The multipoint linkage analysis localized 310 markers (90%) with 257 markers being linearly ordered. The map included 34 linkage groups representing all 31 autosomes and spanning 2262 cM with an average interval between loci of 10.1 cM. This map is a milestone in that it is the first map with linkage groups assigned to each of the 31 automosomes and a single linkage group to all but three chromosomes.
Resumo:
The development of cationic liposomes for gene delivery has been ongoing for almost 20 years; however, despite extensive efforts to develop a successful therapeutic agent, there has been limited progress towards generating an effective pharmaceutical product. Since the introduction of N-(1-[2,3-dioley-loxy]propyl)-N,N,N-trimethylammonium chloride, an immense number of different cationic lipids have been synthesised and used to formulate cationic liposome - DNA complexes. Structural modification of the cationic lipids and the addition of components within the delivery system that can facilitate the fusion, cellular uptake and targeting of liposome - DNA complexes have all been used in a bid to enhance their transfection efficiency. Unfortunately, the overall impact of these improvements is still nominal, with the vast majority of clinical trials (∼ 85%) continuing to rely on more potent viral delivery of DNA despite their associated toxicity issues. Key characteristics of the most effective cationic liposomes for the delivery of plasmid DNA (from a consensus of the literature) is identified here and the problems of converting these attributes into an effective pharmaceutical product are outlined. © 2006 Informa UK Ltd.
Resumo:
The objective of this article is to give an overview of the history of the development and problems of gene therapy, while also considering the ethical and moral issues surrounding the application of the technology.
Resumo:
Two key issues defined the focus of this research in manufacturing plasmid DNA for use In human gene therapy. First, the processing of E.coli bacterial cells to effect the separation of therapeutic plasmid DNA from cellular debris and adventitious material. Second, the affinity purification of the plasmid DNA in a Simple one-stage process. The need arises when considering the concerns that have been recently voiced by the FDA concerning the scalability and reproducibility of the current manufacturing processes in meeting the quality criteria of purity, potency, efficacy, and safety for a recombinant drug substance for use in humans. To develop a preliminary purification procedure, an EFD cross-flow micro-filtration module was assessed for its ability to effect the 20-fold concentration, 6-time diafiltration, and final clarification of the plasmid DNA from the subsequent cell lysate that is derived from a 1 liter E.coli bacterial cell culture. Historically, the employment of cross-flow filtration modules within procedures for harvesting cells from bacterial cultures have failed to reach the required standards dictated by existing continuous centrifuge technologies, frequently resulting in the rapid blinding of the membrane with bacterial cells that substantially reduces the permeate flux. By challenging the EFD module, containing six helical wound tubular membranes promoting centrifugal instabilities known as Dean vortices, with distilled water between the Dean number's of 187Dn and 818Dn,and the transmembrane pressures (TMP) of 0 to 5 psi. The data demonstrated that the fluid dynamics significantly influenced the permeation rate, displaying a maximum at 227Dn (312 Imh) and minimum at 818Dn (130 Imh) for a transmembrane pressure of 1 psi. Numerical studies indicated that the initial increase and subsequent decrease resulted from a competition between the centrifugal and viscous forces that create the Dean vortices. At Dean numbers between 187Dn and 227Dn , the forces combine constructively to increase the apparent strength and influence of the Dean vortices. However, as the Dean number in increases above 227 On the centrifugal force dominates the viscous forces, compressing the Dean vortices into the membrane walls and reducing their influence on the radial transmembrane pressure i.e. the permeate flux reduced. When investigating the action of the Dean vortices in controlling tile fouling rate of E.coli bacterial cells, it was demonstrated that the optimum cross-flow rate at which to effect the concentration of a bacterial cell culture was 579Dn and 3 psi TMP, processing in excess of 400 Imh for 20 minutes (i.e., concentrating a 1L culture to 50 ml in 10 minutes at an average of 450 Imh). The data demonstrated that there was a conflict between the Dean number at which the shear rate could control the cell fouling, and the Dean number at which tile optimum flux enhancement was found. Hence, the internal geometry of the EFD module was shown to sub-optimal for this application. At 579Dn and 3 psi TMP, the 6-fold diafiltration was shown to occupy 3.6 minutes of process time, processing at an average flux of 400 Imh. Again, at 579Dn and 3 psi TMP the clarification of the plasmid from tile resulting freeze-thaw cell lysate was achieved at 120 Iml1, passing 83% (2,5 mg) of the plasmid DNA (6,3 ng μ-1 10.8 mg of genomic DNA (∼23,00 Obp, 36 ng μ-1 ), and 7.2 mg of cellular proteins (5-100 kDa, 21.4 ngμ-1 ) into the post-EFD process stream. Hence the EFD module was shown to be effective, achieving the desired objectives in approximately 25 minutes. On the basis of its ability to intercalate into low molecular weight dsDNA present in dilute cell lysates, and be electrophoresed through agarose, the fluorophore PicoGreen was selected for the development of a suitable dsDNA assay. It was assesseel for its accuracy, and reliability, In determining the concentration and identity of DNA present in samples that were eleclrophoresed through agarose gels. The signal emitted by intercalated PicoGreen was shown to be constant and linear, and that the mobility of the PicaGreen-DNA complex was not affected by the intercalation. Concerning the secondary purification procedure, various anion-exchange membranes were assessed for their ability to capture plasmid DNA from the post-EFD process stream. For a commercially available Sartorius Sartobind Q15 membrane, the reduction in the equilibriumbinding capacity for ctDNA in buffer of increasing ionic demonstrated that DNA was being.adsorbed by electrostatic interactions only. However, the problems associated with fluid distribution across the membrane demonstrated that the membrane housing was the predominant cause of the .erratic breakthrough curves. Consequently, this would need to be rectified before such a membrane could be integrated into the current system, or indeed be scaled beyond laboratory scale. However, when challenged with the process material, the data showed that considerable quantities of protein (1150 μg) were adsorbed preferentially to the plasmid DNA (44 μg). This was also shown for derived Pall Gelman UltraBind US450 membranes that had been functionalised by varying molecular weight poly-L~lysine and polyethyleneimine ligands. Hence the anion-exchange membranes were shown to be ineffective in capturing plasmid DNA from the process stream. Finally, work was performed to integrate a sequence-specific DNA·binding protein into a single-stage DNA chromatography, isolating plasmid DNA from E.coli cells whilst minimising the contamination from genomic DNA and cellular protein. Preliminary work demonstrated that the fusion protein was capable of isolating pUC19 DNA into which the recognition sequence for the fusion-protein had been inserted (pTS DNA) when in the presence of the conditioned process material. Althougth the pTS recognition sequence differs from native pUC19 sequences by only 2 bp, the fusion protein was shown to act as a highly selective affinity ligand for pTS DNA alone. Subsequently, the scale of the process was scaled 25-fold and positioned directly following the EFD system. In conclusion, the integration of the EFD micro-filtration system and zinc-finger affinity purification technique resulted in the capture of approximately 1 mg of plasmid DNA was purified from 1L of E.coli culture in a simple two stage process, resulting in the complete removal of genomic DNA and 96.7% of cellular protein in less than 1 hour of process time.
Resumo:
* This work was financially supported by RFBF-04-01-00858.
Resumo:
Spinal cord injury is a complex pathology often resulting in functional impairment and paralysis. Gene therapy has emerged as a possible solution to the problems of limited neural tissue regeneration through the administration of factors promoting axonal growth, while also offering long-term local delivery of therapeutic molecules at the injury site. Of note, gene therapy is our response to the requirements of neural and glial cells following spinal cord injury, providing, in a time-dependent manner, growth substances for axonal regeneration and eliminating axonal growth inhibitors. Herein, we explore different gene therapy strategies, including targeting gene expression to modulate the presence of neurotrophic growth or survival factors and increase neural tissue plasticity. Special attention is given to describing advances in viral and non-viral gene delivery systems, as well as the available routes of gene delivery. Finally, we discuss the future of combinatorial gene therapies and give consideration to the implementation of gene therapy in humans. © 2014 Future Science Ltd.
Resumo:
The allée is one of the oldest instruments and forms of landscape architecture, which has often been used from the Antiquity for the expression of visual and functional relationships, for the delimitation of space, or for the pictorial creation of movement. The several hundred years old allées of the late baroque age, which still live among us as the witnesses of bygone times, represent a special value throughout Europe. The longevity and the respectable size as such bestow a certain value upon the trees. However, the allées also stand for a garden art, landscape, culture historical and natural value, which in a summarized way are called cultural heritage. Furthermore, the gene pool of the proven longevous, high tolerance tree specimens is a natural and genetic heritage of scientific signification. The age of the trees and allées is finite. Even with a careful and professional care, the renewal is inevitable, which, beyond technical problems of landscape architecture might raise many scientific, nature conservation, yes, esthetical and ethical questions. This is why there is no universal methodology, but there are aspects and examination procedures of general validity with the help of which a renewal can be prepared. The renewal concept of the lime tree allée in Nagycenk aims at the protection and the transmission of the value-ensemble embodied in the allée. One part of the value-ensemble is the spiritual, cultural heritage, the extraordinary value of the landscape-scaled, landscape architectural creation planted and taken care of by the Széchenyis. On the other hand the two and a half centuries old trees represent an inestimable botanical and genetic wealth. Its transmission and preservation is a scientifically important program coming up to the Széchenyi heritage. After the registration of the originally planted old trees, the complete nursery material of the “Széchenyi limes” necessary for the replanting can be produced by vegetative propagation. The gradual replacement of the stand with its own propagation material, by the carefully raised nursery trees of the same age can be a model for the gene-authentic renewal method – a novelty even at an international level.
Resumo:
To carry out their specific roles in the cell, genes and gene products often work together in groups, forming many relationships among themselves and with other molecules. Such relationships include physical protein-protein interaction relationships, regulatory relationships, metabolic relationships, genetic relationships, and much more. With advances in science and technology, some high throughput technologies have been developed to simultaneously detect tens of thousands of pairwise protein-protein interactions and protein-DNA interactions. However, the data generated by high throughput methods are prone to noise. Furthermore, the technology itself has its limitations, and cannot detect all kinds of relationships between genes and their products. Thus there is a pressing need to investigate all kinds of relationships and their roles in a living system using bioinformatic approaches, and is a central challenge in Computational Biology and Systems Biology. This dissertation focuses on exploring relationships between genes and gene products using bioinformatic approaches. Specifically, we consider problems related to regulatory relationships, protein-protein interactions, and semantic relationships between genes. A regulatory element is an important pattern or "signal", often located in the promoter of a gene, which is used in the process of turning a gene "on" or "off". Predicting regulatory elements is a key step in exploring the regulatory relationships between genes and gene products. In this dissertation, we consider the problem of improving the prediction of regulatory elements by using comparative genomics data. With regard to protein-protein interactions, we have developed bioinformatics techniques to estimate support for the data on these interactions. While protein-protein interactions and regulatory relationships can be detected by high throughput biological techniques, there is another type of relationship called semantic relationship that cannot be detected by a single technique, but can be inferred using multiple sources of biological data. The contributions of this thesis involved the development and application of a set of bioinformatic approaches that address the challenges mentioned above. These included (i) an EM-based algorithm that improves the prediction of regulatory elements using comparative genomics data, (ii) an approach for estimating the support of protein-protein interaction data, with application to functional annotation of genes, (iii) a novel method for inferring functional network of genes, and (iv) techniques for clustering genes using multi-source data.
Resumo:
Background. Individual trajectories toward aggression originate in early infancy, before there is intent to harm. We focused on infants who were contentious, i.e., prone to engage in anger and use of physical force with other people, and examined change in levels of contentiousness between 6 and 12 months of age with reference to later aggressive conduct problems.
Sample. The CCDS is a nationally representative sample of 321 firstborn children whose families were recruited from antenatal clinics in two National Health Service Trusts.
Method. Mothers, fathers, and a third family member or friend who knew infants well completed the Cardiff Infant Contentiousness Scale (CICS) at 6 months, which was stable form 6 to 12 months, and validated by direct observation of infants’ use of force against peers. Primary caregivers again completed the CICS at 12 months, and up to three informants completed the Child Behaviour Check List at mean ages of 36 and 84 months. We used Latent Transition Analysis to identify different groups of infants in respect to their patterns of contentiousness from 6 to 12 months.
Results
Three ordered classes of contentiousness from low to high were found at 6 and 12 months. Infants exposed to greater family adversity were more likely to move into the high-contentious class from 6 to 12 months. Higher contentiousness in infancy predicted more aggressive conduct problems at 33 months and thereafter.
Conclusions
Infants exposed to family adversity are already at disadvantage by 6 months and likely to escalate in their anger and aggressiveness over time.
Resumo:
An indirect genetic algorithm for the non-unicost set covering problem is presented. The algorithm is a two-stage meta-heuristic, which in the past was successfully applied to similar multiple-choice optimisation problems. The two stages of the algorithm are an ‘indirect’ genetic algorithm and a decoder routine. First, the solutions to the problem are encoded as permutations of the rows to be covered, which are subsequently ordered by the genetic algorithm. Fitness assignment is handled by the decoder, which transforms the permutations into actual solutions to the set covering problem. This is done by exploiting both problem structure and problem specific information. However, flexibility is retained by a self-adjusting element within the decoder, which allows adjustments to both the data and to stages within the search process. Computational results are presented.
Resumo:
The transition period is associated with the peak incidence of production problems, metabolic disorders and infectious diseases in dairy cows (Drackley, 1999). During this time the cow’s immune system seems to be weakened; it is apparent that metabolic challenges associated with the onset of lactation are factors capable of affecting immune function. However, the reasons for this state are not entirely clear (Goff, 2006). The negative energy balance associated with parturition leads to extensive mobilization of fatty acids stored in adipose tissue, thus, causing marked elevations in blood non-esterified fatty acids (NEFA) and B-hydroxybutyrate (BHBA) concentrations (Drackley et al., 2001). Prepartal level of dietary energy can potentially affect adipose tissue deposition and, thus, the amount of NEFA released into blood and available for metabolism in liver (Drackley et al., 2005). The current feeding practices for pregnant non-lactating cows has been called into question because increasing amounts of moderate-to-high energy diets (i.e. those more similar to lactation diets in the content of energy) during the last 3 wk postpartum have largely failed to overcome peripartal health problems, excessive body condition loss after calving, or declining fertility (Beever, 2006). Current prepartal feeding practices can lead to elevated intakes of energy, which can increase fat deposition in the viscera and upon parturition lead to compromised liver metabolism (Beever, 2006, Drackley et al., 2005). Our general hypothesis was that overfeeding dietary energy during the dry period, accompanied by the metabolic challenges associated with the onset of lactation would render the cow’s immune function less responsive early postpartum. The chapters in this dissertation evaluated neutrophil function, metabolic and inflammation indices and gene expression affected by the plane of dietary energy prepartum and an early post-partum inflammatory challenge in dairy cows. The diet effect in this experiment was transcendental during the transition period and potentially during the entire lactation. Changes in energy balance were observed and provided a good model to study the challenges associated with the onset of lactation. Overall the LPS model provided a consistent response representing an inflammation incident; however the changes in metabolic indices were sudden and hard to detect in most of the cases during the days following the challenge. In general overfeeding dietary energy during the dry period resulted in a less responsive immune function during the early postpartum. In other words, controlling the dietary energy prepartum has more benefits for the dairy cow during transition.
Resumo:
International audience
Resumo:
Background: Recurrent spontaneous abortion is one of the diseases that can lead to physical, psychological, and, economical problems for both individuals and society. Recently a few numbers of genetic polymorphisms in kinase insert domain-containing receptor (KDR) gene are examined that can endanger the life of the fetus in pregnant women. Objective: The risk of KDR gene polymorphisms was investigated in Iranian women with idiopathic recurrent spontaneous abortion (RSA). Materials and Methods: A case controlled study was performed. One hundred idiopathic recurrent spontaneous abortion patients with at least two consecutive pregnancy losses before 20 weeks of gestational age with normal karyotypes were included in the study. Also, 100 healthy women with at least one natural pregnancy were studied as control group. Two functional SNPs located in KDR gene; rs1870377 (Q472H), and rs2305948 (V297I) as well as one tag SNP in the intron region (rs6838752) were genotyped by using PCR based restriction fragment length polymorphism (PCR-RFLP) technique. Haplotype frequency was determined for these three SNPs’ genotypes. Analysis of genetic STRUCTURE and K means clustering were performed to study genetic variation. Results: Functional SNP (rs1870377) was highly linked to tag SNP (rs6838752) (D´ value=0. 214; χ2 = 16.44, p<0. 001). K means clustering showed that k = 8 as the best fit for the optimal number of genetic subgroups in our studied materials. This result was in agreement with Neighbor Joining cluster analysis. Conclusion: In our study, the allele and genotype frequencies were not associated with RSA between patient and control individuals. Inconsistent results in different populations with different allele frequencies among RSA patients and controls may be due to ethnic variation and used sample size.