980 resultados para Ontology Model
Resumo:
Semantic Analysis is a business analysis method designed to capture system requirements. While these requirements may be represented as text, the method also advocates the use of Ontology Charts to formally denote the system's required roles, relationships and forms of communication. Following model driven engineering techniques, Ontology Charts can be transformed to temporal Database schemas, class diagrams and component diagrams, which can then be used to produce software systems. A nice property of these transformations is that resulting system design models lend themselves to complicated extensions that do not require changes to the design models. For example, resulting databases can be extended with new types of data without the need to modify the database schema of the legacy system. Semantic Analysis is not widely used in software engineering, so there is a lack of experts in the field and no design patterns are available. This make it difficult for the analysts to pass organizational knowledge to the engineers. This study describes an implementation that is readily usable by engineers, which includes an automated technique that can produce a prototype from an Ontology Chart. The use of such tools should enable developers to make use of Semantic Analysis with minimal expertise of ontologies and MDA.
Resumo:
Organizations are Complex systems. A conceptual model of the enterprise is needed that is: coherent the distinguished aspect models constitute a logical and truly integral comprehensive all relevant issues are covered consistent the aspect models are free from contradictions or irregularities concise no superfluous matters are contained in it essential it shows only the essence of the enterprise, i.e., the model abstracts from all realization and implementation issues. The world is in great need for transparency about the operation of all the systems we daily work with, ranging from the domestic appliances to the big societal institutions. In this context the field of enterprise ontology has emerged with the aim to create models that help to understand the essence of the construction and operation of complete systems; more specifically, of enterprises. Enterprise ontology arises in the way to look through the distracting and confusing appearance of an enterprise right into its deep kernel. This, from the perspective of the system designer gives him the tools needed to design a successful system in a way that’s reflects the desires and needs of the workers of the enterprise. This project’s context is the use of DEMO (Design and Engineering Methodology for Organizations) for (re)designing or (re)engineering of an enterprise, namely a process of the construction department of a city hall, the lack of a well-founded theory about the construction and operation of this processes that was the motivation behind this work. The purpose of studying applying the DEMO theory and method was to optimize the process, automating it as much as possible, while reducing paper and time spent between tasks and provide a better service to the citizens.
Resumo:
This paper presents a domain ontology, the FeelingTheMusic Ontology - FTMOntology. FTMOntology is designed to represent the complex domain of music and how it relates to other domains like mood, personality and physiology. This includes representing the main concepts and relations of music domain with each of the above-mentioned domains. The concepts and relations between music, mood, personality and physiology. The main contribution of this work is to model and relate these different domains in a consistent ontology. © 2011 Springer-Verlag.
Resumo:
Background: Ontologies have increasingly been used in the biomedical domain, which has prompted the emergence of different initiatives to facilitate their development and integration. The Open Biological and Biomedical Ontologies (OBO) Foundry consortium provides a repository of life-science ontologies, which are developed according to a set of shared principles. This consortium has developed an ontology called OBO Relation Ontology aiming at standardizing the different types of biological entity classes and associated relationships. Since ontologies are primarily intended to be used by humans, the use of graphical notations for ontology development facilitates the capture, comprehension and communication of knowledge between its users. However, OBO Foundry ontologies are captured and represented basically using text-based notations. The Unified Modeling Language (UML) provides a standard and widely-used graphical notation for modeling computer systems. UML provides a well-defined set of modeling elements, which can be extended using a built-in extension mechanism named Profile. Thus, this work aims at developing a UML profile for the OBO Relation Ontology to provide a domain-specific set of modeling elements that can be used to create standard UML-based ontologies in the biomedical domain. Results: We have studied the OBO Relation Ontology, the UML metamodel and the UML profiling mechanism. Based on these studies, we have proposed an extension to the UML metamodel in conformance with the OBO Relation Ontology and we have defined a profile that implements the extended metamodel. Finally, we have applied the proposed UML profile in the development of a number of fragments from different ontologies. Particularly, we have considered the Gene Ontology (GO), the PRotein Ontology (PRO) and the Xenopus Anatomy and Development Ontology (XAO). Conclusions: The use of an established and well-known graphical language in the development of biomedical ontologies provides a more intuitive form of capturing and representing knowledge than using only text-based notations. The use of the profile requires the domain expert to reason about the underlying semantics of the concepts and relationships being modeled, which helps preventing the introduction of inconsistencies in an ontology under development and facilitates the identification and correction of errors in an already defined ontology.
Resumo:
Abstract Background The search for enriched (aka over-represented or enhanced) ontology terms in a list of genes obtained from microarray experiments is becoming a standard procedure for a system-level analysis. This procedure tries to summarize the information focussing on classification designs such as Gene Ontology, KEGG pathways, and so on, instead of focussing on individual genes. Although it is well known in statistics that association and significance are distinct concepts, only the former approach has been used to deal with the ontology term enrichment problem. Results BayGO implements a Bayesian approach to search for enriched terms from microarray data. The R source-code is freely available at http://blasto.iq.usp.br/~tkoide/BayGO in three versions: Linux, which can be easily incorporated into pre-existent pipelines; Windows, to be controlled interactively; and as a web-tool. The software was validated using a bacterial heat shock response dataset, since this stress triggers known system-level responses. Conclusion The Bayesian model accounts for the fact that, eventually, not all the genes from a given category are observable in microarray data due to low intensity signal, quality filters, genes that were not spotted and so on. Moreover, BayGO allows one to measure the statistical association between generic ontology terms and differential expression, instead of working only with the common significance analysis.
Resumo:
Background: The insect exoskeleton provides shape, waterproofing, and locomotion via attached somatic muscles. The exoskeleton is renewed during molting, a process regulated by ecdysteroid hormones. The holometabolous pupa transforms into an adult during the imaginal molt, when the epidermis synthe3sizes the definitive exoskeleton that then differentiates progressively. An important issue in insect development concerns how the exoskeletal regions are constructed to provide their morphological, physiological and mechanical functions. We used whole-genome oligonucleotide microarrays to screen for genes involved in exoskeletal formation in the honeybee thoracic dorsum. Our analysis included three sampling times during the pupal-to-adult molt, i.e., before, during and after the ecdysteroid-induced apolysis that triggers synthesis of the adult exoskeleton. Results: Gene ontology annotation based on orthologous relationships with Drosophila melanogaster genes placed the honeybee differentially expressed genes (DEGs) into distinct categories of Biological Process and Molecular Function, depending on developmental time, revealing the functional elements required for adult exoskeleton formation. Of the 1,253 unique DEGs, 547 were upregulated in the thoracic dorsum after apolysis, suggesting induction by the ecdysteroid pulse. The upregulated gene set included 20 of the 47 cuticular protein (CP) genes that were previously identified in the honeybee genome, and three novel putative CP genes that do not belong to a known CP family. In situ hybridization showed that two of the novel genes were abundantly expressed in the epidermis during adult exoskeleton formation, strongly implicating them as genuine CP genes. Conserved sequence motifs identified the CP genes as members of the CPR, Tweedle, Apidermin, CPF, CPLCP1 and Analogous-to-Peritrophins families. Furthermore, 28 of the 36 muscle-related DEGs were upregulated during the de novo formation of striated fibers attached to the exoskeleton. A search for cis-regulatory motifs in the 5′-untranslated region of the DEGs revealed potential binding sites for known transcription factors. Construction of a regulatory network showed that various upregulated CP- and muscle-related genes (15 and 21 genes, respectively) share common elements, suggesting co-regulation during thoracic exoskeleton formation. Conclusions: These findings help reveal molecular aspects of rigid thoracic exoskeleton formation during the ecdysteroid-coordinated pupal-to-adult molt in the honeybee.
Resumo:
Microarray gene expression profiles of fresh clinical samples of chronic myeloid leukaemia in chronic phase, acute promyelocytic leukaemia and acute monocytic leukaemia were compared with profiles from cell lines representing the corresponding types of leukaemia (K562, NB4, HL60). In a hierarchical clustering analysis, all clinical samples clustered separately from the cell lines, regardless of leukaemic subtype. Gene ontology analysis showed that cell lines chiefly overexpressed genes related to macromolecular metabolism, whereas in clinical samples genes related to the immune response were abundantly expressed. These findings must be taken into consideration when conclusions from cell line-based studies are extrapolated to patients.
Resumo:
This paper describes the development of an ontology for autonomous systems, as the initial stage of a research programe on autonomous systems’ engineering within a model-based control approach. The ontology aims at providing a unified conceptual framework for the autonomous systems’ stakeholders, from developers to software engineers. The modular ontology contains both generic and domain-specific concepts for autonomous systems description and engineering. The ontology serves as the basis in a methodology to obtain the autonomous system’s conceptual models. The objective is to obtain and to use these models as main input for the autonomous system’s model-based control system.
Resumo:
OntoTag - A Linguistic and Ontological Annotation Model Suitable for the Semantic Web
1. INTRODUCTION. LINGUISTIC TOOLS AND ANNOTATIONS: THEIR LIGHTS AND SHADOWS
Computational Linguistics is already a consolidated research area. It builds upon the results of other two major ones, namely Linguistics and Computer Science and Engineering, and it aims at developing computational models of human language (or natural language, as it is termed in this area). Possibly, its most well-known applications are the different tools developed so far for processing human language, such as machine translation systems and speech recognizers or dictation programs.
These tools for processing human language are commonly referred to as linguistic tools. Apart from the examples mentioned above, there are also other types of linguistic tools that perhaps are not so well-known, but on which most of the other applications of Computational Linguistics are built. These other types of linguistic tools comprise POS taggers, natural language parsers and semantic taggers, amongst others. All of them can be termed linguistic annotation tools.
Linguistic annotation tools are important assets. In fact, POS and semantic taggers (and, to a lesser extent, also natural language parsers) have become critical resources for the computer applications that process natural language. Hence, any computer application that has to analyse a text automatically and ‘intelligently’ will include at least a module for POS tagging. The more an application needs to ‘understand’ the meaning of the text it processes, the more linguistic tools and/or modules it will incorporate and integrate.
However, linguistic annotation tools have still some limitations, which can be summarised as follows:
1. Normally, they perform annotations only at a certain linguistic level (that is, Morphology, Syntax, Semantics, etc.).
2. They usually introduce a certain rate of errors and ambiguities when tagging. This error rate ranges from 10 percent up to 50 percent of the units annotated for unrestricted, general texts.
3. Their annotations are most frequently formulated in terms of an annotation schema designed and implemented ad hoc.
A priori, it seems that the interoperation and the integration of several linguistic tools into an appropriate software architecture could most likely solve the limitations stated in (1). Besides, integrating several linguistic annotation tools and making them interoperate could also minimise the limitation stated in (2). Nevertheless, in the latter case, all these tools should produce annotations for a common level, which would have to be combined in order to correct their corresponding errors and inaccuracies. Yet, the limitation stated in (3) prevents both types of integration and interoperation from being easily achieved.
In addition, most high-level annotation tools rely on other lower-level annotation tools and their outputs to generate their own ones. For example, sense-tagging tools (operating at the semantic level) often use POS taggers (operating at a lower level, i.e., the morphosyntactic) to identify the grammatical category of the word or lexical unit they are annotating. Accordingly, if a faulty or inaccurate low-level annotation tool is to be used by other higher-level one in its process, the errors and inaccuracies of the former should be minimised in advance. Otherwise, these errors and inaccuracies would be transferred to (and even magnified in) the annotations of the high-level annotation tool.
Therefore, it would be quite useful to find a way to
(i) correct or, at least, reduce the errors and the inaccuracies of lower-level linguistic tools;
(ii) unify the annotation schemas of different linguistic annotation tools or, more generally speaking, make these tools (as well as their annotations) interoperate.
Clearly, solving (i) and (ii) should ease the automatic annotation of web pages by means of linguistic tools, and their transformation into Semantic Web pages (Berners-Lee, Hendler and Lassila, 2001). Yet, as stated above, (ii) is a type of interoperability problem. There again, ontologies (Gruber, 1993; Borst, 1997) have been successfully applied thus far to solve several interoperability problems. Hence, ontologies should help solve also the problems and limitations of linguistic annotation tools aforementioned.
Thus, to summarise, the main aim of the present work was to combine somehow these separated approaches, mechanisms and tools for annotation from Linguistics and Ontological Engineering (and the Semantic Web) in a sort of hybrid (linguistic and ontological) annotation model, suitable for both areas. This hybrid (semantic) annotation model should (a) benefit from the advances, models, techniques, mechanisms and tools of these two areas; (b) minimise (and even solve, when possible) some of the problems found in each of them; and (c) be suitable for the Semantic Web. The concrete goals that helped attain this aim are presented in the following section.
2. GOALS OF THE PRESENT WORK
As mentioned above, the main goal of this work was to specify a hybrid (that is, linguistically-motivated and ontology-based) model of annotation suitable for the Semantic Web (i.e. it had to produce a semantic annotation of web page contents). This entailed that the tags included in the annotations of the model had to (1) represent linguistic concepts (or linguistic categories, as they are termed in ISO/DCR (2008)), in order for this model to be linguistically-motivated; (2) be ontological terms (i.e., use an ontological vocabulary), in order for the model to be ontology-based; and (3) be structured (linked) as a collection of ontology-based
Resumo:
Abstract Idea Management Systems are web applications that implement the notion of open innovation though crowdsourcing. Typically, organizations use those kind of systems to connect to large communities in order to gather ideas for improvement of products or services. Originating from simple suggestion boxes, Idea Management Systems advanced beyond collecting ideas and aspire to be a knowledge management solution capable to select best ideas via collaborative as well as expert assessment methods. In practice, however, the contemporary systems still face a number of problems usually related to information overflow and recognizing questionable quality of submissions with reasonable time and effort allocation. This thesis focuses on idea assessment problem area and contributes a number of solutions that allow to filter, compare and evaluate ideas submitted into an Idea Management System. With respect to Idea Management System interoperability the thesis proposes theoretical model of Idea Life Cycle and formalizes it as the Gi2MO ontology which enables to go beyond the boundaries of a single system to compare and assess innovation in an organization wide or market wide context. Furthermore, based on the ontology, the thesis builds a number of solutions for improving idea assessment via: community opinion analysis (MARL), annotation of idea characteristics (Gi2MO Types) and study of idea relationships (Gi2MO Links). The main achievements of the thesis are: application of theoretical innovation models for practice of Idea Management to successfully recognize the differentiation between communities, opinion metrics and their recognition as a new tool for idea assessment, discovery of new relationship types between ideas and their impact on idea clustering. Finally, the thesis outcome is establishment of Gi2MO Project that serves as an incubator for Idea Management solutions and mature open-source software alternatives for the widely available commercial suites. From the academic point of view the project delivers resources to undertake experiments in the Idea Management Systems area and managed to become a forum that gathered a number of academic and industrial partners. Resumen Los Sistemas de Gestión de Ideas son aplicaciones Web que implementan el concepto de innovación abierta con técnicas de crowdsourcing. Típicamente, las organizaciones utilizan ese tipo de sistemas para conectar con comunidades grandes y así recoger ideas sobre cómo mejorar productos o servicios. Los Sistemas de Gestión de Ideas lian avanzado más allá de recoger simplemente ideas de buzones de sugerencias y ahora aspiran ser una solución de gestión de conocimiento capaz de seleccionar las mejores ideas por medio de técnicas colaborativas, así como métodos de evaluación llevados a cabo por expertos. Sin embargo, en la práctica, los sistemas contemporáneos todavía se enfrentan a una serie de problemas, que, por lo general, están relacionados con la sobrecarga de información y el reconocimiento de las ideas de dudosa calidad con la asignación de un tiempo y un esfuerzo razonables. Esta tesis se centra en el área de la evaluación de ideas y aporta una serie de soluciones que permiten filtrar, comparar y evaluar las ideas publicadas en un Sistema de Gestión de Ideas. Con respecto a la interoperabilidad de los Sistemas de Gestión de Ideas, la tesis propone un modelo teórico del Ciclo de Vida de la Idea y lo formaliza como la ontología Gi2MO que permite ir más allá de los límites de un sistema único para comparar y evaluar la innovación en un contexto amplio dentro de cualquier organización o mercado. Por otra parte, basado en la ontología, la tesis desarrolla una serie de soluciones para mejorar la evaluación de las ideas a través de: análisis de las opiniones de la comunidad (MARL), la anotación de las características de las ideas (Gi2MO Types) y el estudio de las relaciones de las ideas (Gi2MO Links). Los logros principales de la tesis son: la aplicación de los modelos teóricos de innovación para la práctica de Sistemas de Gestión de Ideas para reconocer las diferenciasentre comu¬nidades, métricas de opiniones de comunidad y su reconocimiento como una nueva herramienta para la evaluación de ideas, el descubrimiento de nuevos tipos de relaciones entre ideas y su impacto en la agrupación de estas. Por último, el resultado de tesis es el establecimiento de proyecto Gi2MO que sirve como incubadora de soluciones para Gestión de Ideas y herramientas de código abierto ya maduras como alternativas a otros sistemas comerciales. Desde el punto de vista académico, el proyecto ha provisto de recursos a ciertos experimentos en el área de Sistemas de Gestión de Ideas y logró convertirse en un foro que reunión para un número de socios tanto académicos como industriales.
Resumo:
Advances in electronics nowadays facilitate the design of smart spaces based on physical mash-ups of sensor and actuator devices. At the same time, software paradigms such as Internet of Things (IoT) and Web of Things (WoT) are motivating the creation of technology to support the development and deployment of web-enabled embedded sensor and actuator devices with two major objectives: (i) to integrate sensing and actuating functionalities into everyday objects, and (ii) to easily allow a diversity of devices to plug into the Internet. Currently, developers who are applying this Internet-oriented approach need to have solid understanding about specific platforms and web technologies. In order to alleviate this development process, this research proposes a Resource-Oriented and Ontology-Driven Development (ROOD) methodology based on the Model Driven Architecture (MDA). This methodology aims at enabling the development of smart spaces through a set of modeling tools and semantic technologies that support the definition of the smart space and the automatic generation of code at hardware level. ROOD feasibility is demonstrated by building an adaptive health monitoring service for a Smart Gym.
Resumo:
Semantic Sensor Web infrastructures use ontology-based models to represent the data that they manage; however, up to now, these ontological models do not allow representing all the characteristics of distributed, heterogeneous, and web-accessible sensor data. This paper describes a core ontological model for Semantic Sensor Web infrastructures that covers these characteristics and that has been built with a focus on reusability. This ontological model is composed of different modules that deal, on the one hand, with infrastructure data and, on the other hand, with data from a specific domain, that is, the coastal flood emergency planning domain. The paper also presents a set of guidelines, followed during the ontological model development, to satisfy a common set of requirements related to modelling domain-specific features of interest and properties. In addition, the paper includes the results obtained after an exhaustive evaluation of the developed ontologies along different aspects (i.e., vocabulary, syntax, structure, semantics, representation, and context).
Resumo:
Autonomous systems refer to systems capable of operating in a real world environment without any form of external control for extended periods of time. Autonomy is a desired goal for every system as it improves its performance, safety and profit. Ontologies are a way to conceptualize the knowledge of a specific domain. In this paper an ontology for the description of autonomous systems as well as for its development (engineering) is presented and applied to a process. This ontology is intended to be applied and used to generate final applications following a model driven methodology.
Resumo:
Provenance is key for describing the evolution of a resource, the entity responsible for its changes and how these changes affect its final state. A proper description of the provenance of a resource shows who has its attribution and can help resolving whether it can be trusted or not. This tutorial will provide an overview of the W3C PROV data model and its serialization as an OWL ontology. The tutorial will incrementally explain the features of the PROV data model, from the core starting terms to the most complex concepts. Finally, the tutorial will show the relation between PROV-O and the Dublin Core Metadata terms.
Resumo:
Current solutions to the interoperability problem in Home Automation systems are based on a priori agreements where protocols are standardized and later integrated through specific gateways. In this regards, spontaneous interoperability, or the ability to integrate new devices into the system with minimum planning in advance, is still considered a major challenge that requires new models of connectivity. In this paper we present an ontology-driven communication architecture whose main contribution is that it facilitates spontaneous interoperability at system model level by means of semantic integration. The architecture has been validated through a prototype and the main challenges for achieving complete spontaneous interoperability are also evaluated.