439 resultados para Ontologies
Resumo:
Semantic interoperability is essential to facilitate efficient collaboration in heterogeneous multi-site healthcare environments. The deployment of a semantic interoperability solution has the potential to enable a wide range of informatics supported applications in clinical care and research both within as ingle healthcare organization and in a network of organizations. At the same time, building and deploying a semantic interoperability solution may require significant effort to carryout data transformation and to harmonize the semantics of the information in the different systems. Our approach to semantic interoperability leverages existing healthcare standards and ontologies, focusing first on specific clinical domains and key applications, and gradually expanding the solution when needed. An important objective of this work is to create a semantic link between clinical research and care environments to enable applications such as streamlining the execution of multi-centric clinical trials, including the identification of eligible patients for the trials. This paper presents an analysis of the suitability of several widely-used medical ontologies in the clinical domain: SNOMED-CT, LOINC, MedDRA, to capture the semantics of the clinical trial eligibility criteria, of the clinical trial data (e.g., Clinical Report Forms), and of the corresponding patient record data that would enable the automatic identification of eligible patients. Next to the coverage provided by the ontologies we evaluate and compare the sizes of the sets of relevant concepts and their relative frequency to estimate the cost of data transformation, of building the necessary semantic mappings, and of extending the solution to new domains. This analysis shows that our approach is both feasible and scalable.
Resumo:
In this paper we define the notion of an axiom dependency hypergraph, which explicitly represents how axioms are included into a module by the algorithm for computing locality-based modules. A locality-based module of an ontology corresponds to a set of connected nodes in the hypergraph, and atoms of an ontology to strongly connected components. Collapsing the strongly connected components into single nodes yields a condensed hypergraph that comprises a representation of the atomic decomposition of the ontology. To speed up the condensation of the hypergraph, we first reduce its size by collapsing the strongly connected components of its graph fragment employing a linear time graph algorithm. This approach helps to significantly reduce the time needed for computing the atomic decomposition of an ontology. We provide an experimental evaluation for computing the atomic decomposition of large biomedical ontologies. We also demonstrate a significant improvement in the time needed to extract locality-based modules from an axiom dependency hypergraph and its condensed version.
Resumo:
La reproducibilidad de estudios y resultados científicos es una meta a tener en cuenta por cualquier científico a la hora de publicar el producto de una investigación. El auge de la ciencia computacional, como una forma de llevar a cabo estudios empíricos haciendo uso de modelos matemáticos y simulaciones, ha derivado en una serie de nuevos retos con respecto a la reproducibilidad de dichos experimentos. La adopción de los flujos de trabajo como método para especificar el procedimiento científico de estos experimentos, así como las iniciativas orientadas a la conservación de los datos experimentales desarrolladas en las últimas décadas, han solucionado parcialmente este problema. Sin embargo, para afrontarlo de forma completa, la conservación y reproducibilidad del equipamiento computacional asociado a los flujos de trabajo científicos deben ser tenidas en cuenta. La amplia gama de recursos hardware y software necesarios para ejecutar un flujo de trabajo científico hace que sea necesario aportar una descripción completa detallando que recursos son necesarios y como estos deben de ser configurados. En esta tesis abordamos la reproducibilidad de los entornos de ejecución para flujos de trabajo científicos, mediante su documentación usando un modelo formal que puede ser usado para obtener un entorno equivalente. Para ello, se ha propuesto un conjunto de modelos para representar y relacionar los conceptos relevantes de dichos entornos, así como un conjunto de herramientas que hacen uso de dichos módulos para generar una descripción de la infraestructura, y un algoritmo capaz de generar una nueva especificación de entorno de ejecución a partir de dicha descripción, la cual puede ser usada para recrearlo usando técnicas de virtualización. Estas contribuciones han sido aplicadas a un conjunto representativo de experimentos científicos pertenecientes a diferentes dominios de la ciencia, exponiendo cada uno de ellos diferentes requisitos hardware y software. Los resultados obtenidos muestran la viabilidad de propuesta desarrollada, reproduciendo de forma satisfactoria los experimentos estudiados en diferentes entornos de virtualización. ABSTRACT Reproducibility of scientific studies and results is a goal that every scientist must pursuit when announcing research outcomes. The rise of computational science, as a way of conducting empirical studies by using mathematical models and simulations, have opened a new range of challenges in this context. The adoption of workflows as a way of detailing the scientific procedure of these experiments, along with the experimental data conservation initiatives that have been undertaken during last decades, have partially eased this problem. However, in order to fully address it, the conservation and reproducibility of the computational equipment related to them must be also considered. The wide range of software and hardware resources required to execute a scientific workflow implies that a comprehensive description detailing what those resources are and how they are arranged is necessary. In this thesis we address the issue of reproducibility of execution environments for scientific workflows, by documenting them in a formalized way, which can be later used to obtain and equivalent one. In order to do so, we propose a set of semantic models for representing and relating the relevant information of those environments, as well as a set of tools that uses these models for generating a description of the infrastructure, and an algorithmic process that consumes these descriptions for deriving a new execution environment specification, which can be enacted into a new equivalent one using virtualization solutions. We apply these three contributions to a set of representative scientific experiments, belonging to different scientific domains, and exposing different software and hardware requirements. The obtained results prove the feasibility of the proposed approach, by successfully reproducing the target experiments under different virtualization environments.
Resumo:
Los hipergrafos dirigidos se han empleado en problemas relacionados con lógica proposicional, bases de datos relacionales, linguística computacional y aprendizaje automático. Los hipergrafos dirigidos han sido también utilizados como alternativa a los grafos (bipartitos) dirigidos para facilitar el estudio de las interacciones entre componentes de sistemas complejos que no pueden ser fácilmente modelados usando exclusivamente relaciones binarias. En este contexto, este tipo de representación es conocida como hiper-redes. Un hipergrafo dirigido es una generalización de un grafo dirigido especialmente adecuado para la representación de relaciones de muchos a muchos. Mientras que una arista en un grafo dirigido define una relación entre dos de sus nodos, una hiperarista en un hipergrafo dirigido define una relación entre dos conjuntos de sus nodos. La conexión fuerte es una relación de equivalencia que divide el conjunto de nodos de un hipergrafo dirigido en particiones y cada partición define una clase de equivalencia conocida como componente fuertemente conexo. El estudio de los componentes fuertemente conexos de un hipergrafo dirigido puede ayudar a conseguir una mejor comprensión de la estructura de este tipo de hipergrafos cuando su tamaño es considerable. En el caso de grafo dirigidos, existen algoritmos muy eficientes para el cálculo de los componentes fuertemente conexos en grafos de gran tamaño. Gracias a estos algoritmos, se ha podido averiguar que la estructura de la WWW tiene forma de “pajarita”, donde más del 70% del los nodos están distribuidos en tres grandes conjuntos y uno de ellos es un componente fuertemente conexo. Este tipo de estructura ha sido también observada en redes complejas en otras áreas como la biología. Estudios de naturaleza similar no han podido ser realizados en hipergrafos dirigidos porque no existe algoritmos capaces de calcular los componentes fuertemente conexos de este tipo de hipergrafos. En esta tesis doctoral, hemos investigado como calcular los componentes fuertemente conexos de un hipergrafo dirigido. En concreto, hemos desarrollado dos algoritmos para este problema y hemos determinado que son correctos y cuál es su complejidad computacional. Ambos algoritmos han sido evaluados empíricamente para comparar sus tiempos de ejecución. Para la evaluación, hemos producido una selección de hipergrafos dirigidos generados de forma aleatoria inspirados en modelos muy conocidos de grafos aleatorios como Erdos-Renyi, Newman-Watts-Strogatz and Barabasi-Albert. Varias optimizaciones para ambos algoritmos han sido implementadas y analizadas en la tesis. En concreto, colapsar los componentes fuertemente conexos del grafo dirigido que se puede construir eliminando ciertas hiperaristas complejas del hipergrafo dirigido original, mejora notablemente los tiempos de ejecucion de los algoritmos para varios de los hipergrafos utilizados en la evaluación. Aparte de los ejemplos de aplicación mencionados anteriormente, los hipergrafos dirigidos han sido también empleados en el área de representación de conocimiento. En concreto, este tipo de hipergrafos se han usado para el cálculo de módulos de ontologías. Una ontología puede ser definida como un conjunto de axiomas que especifican formalmente un conjunto de símbolos y sus relaciones, mientras que un modulo puede ser entendido como un subconjunto de axiomas de la ontología que recoge todo el conocimiento que almacena la ontología sobre un conjunto especifico de símbolos y sus relaciones. En la tesis nos hemos centrado solamente en módulos que han sido calculados usando la técnica de localidad sintáctica. Debido a que las ontologías pueden ser muy grandes, el cálculo de módulos puede facilitar las tareas de re-utilización y mantenimiento de dichas ontologías. Sin embargo, analizar todos los posibles módulos de una ontología es, en general, muy costoso porque el numero de módulos crece de forma exponencial con respecto al número de símbolos y de axiomas de la ontología. Afortunadamente, los axiomas de una ontología pueden ser divididos en particiones conocidas como átomos. Cada átomo representa un conjunto máximo de axiomas que siempre aparecen juntos en un modulo. La decomposición atómica de una ontología es definida como un grafo dirigido de tal forma que cada nodo del grafo corresponde con un átomo y cada arista define una dependencia entre una pareja de átomos. En esta tesis introducimos el concepto de“axiom dependency hypergraph” que generaliza el concepto de descomposición atómica de una ontología. Un modulo en una ontología correspondería con un componente conexo en este tipo de hipergrafos y un átomo de una ontología con un componente fuertemente conexo. Hemos adaptado la implementación de nuestros algoritmos para que funcionen también con axiom dependency hypergraphs y poder de esa forma calcular los átomos de una ontología. Para demostrar la viabilidad de esta idea, hemos incorporado nuestros algoritmos en una aplicación que hemos desarrollado para la extracción de módulos y la descomposición atómica de ontologías. A la aplicación la hemos llamado HyS y hemos estudiado sus tiempos de ejecución usando una selección de ontologías muy conocidas del área biomédica, la mayoría disponibles en el portal de Internet NCBO. Los resultados de la evaluación muestran que los tiempos de ejecución de HyS son mucho mejores que las aplicaciones más rápidas conocidas. ABSTRACT Directed hypergraphs are an intuitive modelling formalism that have been used in problems related to propositional logic, relational databases, computational linguistic and machine learning. Directed hypergraphs are also presented as an alternative to directed (bipartite) graphs to facilitate the study of the interactions between components of complex systems that cannot naturally be modelled as binary relations. In this context, they are known as hyper-networks. A directed hypergraph is a generalization of a directed graph suitable for representing many-to-many relationships. While an edge in a directed graph defines a relation between two nodes of the graph, a hyperedge in a directed hypergraph defines a relation between two sets of nodes. Strong-connectivity is an equivalence relation that induces a partition of the set of nodes of a directed hypergraph into strongly-connected components. These components can be collapsed into single nodes. As result, the size of the original hypergraph can significantly be reduced if the strongly-connected components have many nodes. This approach might contribute to better understand how the nodes of a hypergraph are connected, in particular when the hypergraphs are large. In the case of directed graphs, there are efficient algorithms that can be used to compute the strongly-connected components of large graphs. For instance, it has been shown that the macroscopic structure of the World Wide Web can be represented as a “bow-tie” diagram where more than 70% of the nodes are distributed into three large sets and one of these sets is a large strongly-connected component. This particular structure has been also observed in complex networks in other fields such as, e.g., biology. Similar studies cannot be conducted in a directed hypergraph because there does not exist any algorithm for computing the strongly-connected components of the hypergraph. In this thesis, we investigate ways to compute the strongly-connected components of directed hypergraphs. We present two new algorithms and we show their correctness and computational complexity. One of these algorithms is inspired by Tarjan’s algorithm for directed graphs. The second algorithm follows a simple approach to compute the stronglyconnected components. This approach is based on the fact that two nodes of a graph that are strongly-connected can also reach the same nodes. In other words, the connected component of each node is the same. Both algorithms are empirically evaluated to compare their performances. To this end, we have produced a selection of random directed hypergraphs inspired by existent and well-known random graphs models like Erd˝os-Renyi and Newman-Watts-Strogatz. Besides the application examples that we mentioned earlier, directed hypergraphs have also been employed in the field of knowledge representation. In particular, they have been used to compute the modules of an ontology. An ontology is defined as a collection of axioms that provides a formal specification of a set of terms and their relationships; and a module is a subset of an ontology that completely captures the meaning of certain terms as defined in the ontology. In particular, we focus on the modules computed using the notion of syntactic locality. As ontologies can be very large, the computation of modules facilitates the reuse and maintenance of these ontologies. Analysing all modules of an ontology, however, is in general not feasible as the number of modules grows exponentially in the number of terms and axioms of the ontology. Nevertheless, the modules can succinctly be represented using the Atomic Decomposition of an ontology. Using this representation, an ontology can be partitioned into atoms, which are maximal sets of axioms that co-occur in every module. The Atomic Decomposition is then defined as a directed graph such that each node correspond to an atom and each edge represents a dependency relation between two atoms. In this thesis, we introduce the notion of an axiom dependency hypergraph which is a generalization of the atomic decomposition of an ontology. A module in the ontology corresponds to a connected component in the hypergraph, and the atoms of the ontology to the strongly-connected components. We apply our algorithms for directed hypergraphs to axiom dependency hypergraphs and in this manner, we compute the atoms of an ontology. To demonstrate the viability of this approach, we have implemented the algorithms in the application HyS which computes the modules of ontologies and calculate their atomic decomposition. In the thesis, we provide an experimental evaluation of HyS with a selection of large and prominent biomedical ontologies, most of which are available in the NCBO Bioportal. HyS outperforms state-of-the-art implementations in the tasks of extracting modules and computing the atomic decomposition of these ontologies.
Resumo:
For many years in the area of business systems analysis and design, practitioners and researchers alike have been searching for some comprehensive basis on which to evaluate, compare, and engineer techniques that are promoted for use in the modelling of systems' requirements. To date, while many frameworks, factors, and facets have been forthcoming, none appear to be based on a sound theory. In light of this dilemma, over the last 10 years, attention has been devoted by researchers to the use of ontology to provide some theoretical basis for the advancement of the business systems modelling discipline. This paper outlines how we have used a particular ontology for this purpose over the last five years. In particular we have learned that the understandability and the applicability of the selected ontology must be clear for IS professionals, the results of any ontological evaluation must be tempered by economic efficiency considerations of the stakeholders involved, and ontologies may have to be focused for the business purpose and type of user involved in the modelling situation.
Resumo:
The Bunge-Wand-Weber (BWW) representation model defines ontological constructs for information systems. According to these constructs the completeness and efficiency of a modeling technique can be defined. Ontology plays an essential role in e-commerce. Using or updating an existing ontology and providing tools to solve any semantic conflicts become essential steps before putting a system online. We use conceptual graphs (CGs) to implement ontologies. This paper evaluates CG capabilities using the BWW representation model. It finds out that CGs are ontologically complete according to Wand and Weber definition. Also it finds out that CGs have construct overload and construct redundancy which can undermine the ontological clarity of CGs. This leads us to build a meta-model to avoid some ontological-unclarity problems. We use some of the BWW constructs to build the meta-model. (c) 2004 Elsevier Ltd. All rights reserved.
Resumo:
An ontology is increasingly becoming an essential tool for solving problems in many research areas. The ontology is a complex information object. It can contain millions of concepts in complex relationships. When we want to manage complex information objects, we generally turn to information systems technology. An information system intended to manage ontology is called an ontology server. The ontology server technology is at the time of writing quite immature. Therefore, this paper reviews and compares the main ontology servers that have been reported in the literatures. As a result, we point out several research questions related to server technology
Resumo:
This paper presents a Java-based hyperbolic-style browser designed to render RDF files as structured ontological maps. The program was motivated by the need to browse the content of a web-accessible ontology server: WEB KB-2. The ontology server contains descriptions of over 74,500 object types derived from the WordNet 1.7 lexical database and can be accessed using RDF syntax. Such a structure creates complications for hyperbolic-style displays. In WEB KB-2 there are 140 stable ontology link types and a hyperbolic display needs to filter and iconify the view so different link relations can be distinguished in multi-link views. Our browsing tool, OntoRama, is therefore motivated by two possibly interfering aims: the first to display up to 10 times the number of nodes in a hyperbolic-style view than using a conventional graphics display; secondly, to render the ontology with multiple links comprehensible in that view.
Resumo:
Ontology search and reuse is becoming increasingly important as the quest for methods to reduce the cost of constructing such knowledge structures continues. A number of ontology libraries and search engines are coming to existence to facilitate locating and retrieving potentially relevant ontologies. The number of ontologies available for reuse is steadily growing, and so is the need for methods to evaluate and rank existing ontologies in terms of their relevance to the needs of the knowledge engineer. This paper presents AKTiveRank, a prototype system for ranking ontologies based on a number of structural metrics.
Resumo:
Representing knowledge using domain ontologies has shown to be a useful mechanism and format for managing and exchanging information. Due to the difficulty and cost of building ontologies, a number of ontology libraries and search engines are coming to existence to facilitate reusing such knowledge structures. The need for ontology ranking techniques is becoming crucial as the number of ontologies available for reuse is continuing to grow. In this paper we present AKTiveRank, a prototype system for ranking ontologies based on the analysis of their structures. We describe the metrics used in the ranking system and present an experiment on ranking ontologies returned by a popular search engine for an example query.