863 resultados para Olive fruit-fly
Resumo:
GOMES, Carlos E. M. et al. Effect of trypsin inhibitor from Crotalaria pallida seeds on Callosobruchus maculatus (cowpea weevil) and Ceratitis capitata (fruit fly). Plant Physiology and Biochemistry (Paris), v. 43, n. 12, p. 1095-1102, 2005.ISSN 0981-9428. DOI:10.1016/j.plaphy.2005.11.004.
Resumo:
GOMES, Carlos E. M. et al. Effect of trypsin inhibitor from Crotalaria pallida seeds on Callosobruchus maculatus (cowpea weevil) and Ceratitis capitata (fruit fly). Plant Physiology and Biochemistry (Paris), v. 43, n. 12, p. 1095-1102, 2005.ISSN 0981-9428. DOI:10.1016/j.plaphy.2005.11.004.
Resumo:
Perimeter-baiting of non-crop vegetation using toxic protein baits was developed overseas as a technique for control of melon fly, Zeugodacus (Zeugodacus) cucurbitae (Coquillett) (formerly Bactrocera (Zeugodacus) cucurbitae), and evidence suggests that this technique may also be effective in Australia for control of local fruit fly species in vegetable crops. Using field cage trials and laboratory reared flies, primary data were generated to support this approach by testing fruit flies' feeding response to protein when applied to eight plant species (forage sorghum, grain sorghum, sweet corn, sugarcane, eggplant, cassava, lilly pilly and orange jessamine) and applied at three heights (1, 1.5 and 2 m). When compared across the plants, Queensland fruit fly, Bactrocera tryoni (Froggatt), most commonly fed on protein bait applied to sugarcane and cassava, whereas more cucumber fly, Zeugodacus (Austrodacus) cucumis (French) (formerly Bactrocera (Austrodacus) cucumis), fed on bait applied to sweet corn and forage sorghum. When protein bait was applied at different heights, B. tryoni responded most to bait placed in the upper part of the plants (2 m), whereas Z. cucumis preferred bait placed lower on the plants (1 and 1.5 m). These results have implications for optimal placement of protein bait for best practice control of fruit flies in vegetable crops and suggest that the two species exhibit different foraging behaviours.
Resumo:
Bactrocera tryoni (Froggatt) is Australia's major horticultural insect pest, yet monitoring females remains logistically difficult. We trialled the ‘Ladd trap’ as a potential female surveillance or monitoring tool. This trap design is used to trap and monitor fruit flies in countries other (e.g. USA) than Australia. The Ladd trap consists of a flat yellow panel (a traditional ‘sticky trap’), with a three dimensional red sphere (= a fruit mimic) attached in the middle. We confirmed, in field-cage trials, that the combination of yellow panel and red sphere was more attractive to B. tryoni than the two components in isolation. In a second set of field-cage trials, we showed that it was the red-yellow contrast, rather than the three dimensional effect, which was responsible for the trap's effectiveness, with B. tryoni equally attracted to a Ladd trap as to a two-dimensional yellow panel with a circular red centre. The sex ratio of catches was approximately even in the field-cage trials. In field trials, we tested the traditional red-sphere Ladd trap against traps for which the sphere was painted blue, black or yellow. The colour of sphere did not significantly influence trap efficiency in these trials, despite the fact the yellow-panel/yellow-sphere presented no colour contrast to the flies. In 6 weeks of field trials, over 1500 flies were caught, almost exactly two-thirds of them being females. Overall, flies were more likely to be caught on the yellow panel than the sphere; but, for the commercial Ladd trap, proportionally more females were caught on the red sphere versus the yellow panel than would be predicted based on relative surface area of each component, a result also seen the field-cage trial. We determined that no modification of the trap was more effective than the commercially available Ladd trap and so consider that product suitable for more extensive field testing as a B. tryoni research and monitoring tool.
Resumo:
The primary goal of systems biology is to integrate complex omics data, and data obtained from traditional experimental studies in order to provide a holistic understanding of organismal function. One way of achieving this aim is to generate genome-scale metabolic models (GEMs), which contain information on all metabolites, enzyme-coding genes, and biochemical reactions in a biological system. Drosophila melanogaster GEM has not been reconstructed to date. Constraint-free genome-wide metabolic model of the fruit fly has been reconstructed in our lab, identifying gaps, where no enzyme was identified and metabolites were either only produced or consume. The main focus of the work presented in this thesis was to develop a pipeline for efficient gap filling using metabolomics approaches combined with standard reverse genetics methods, using 5-hydroxyisourate hydrolase (5-HIUH) as an example. 5-HIUH plays a role in urate degradation pathway. Inability to degrade urate can lead to inborn errors of metabolism (IEMs) in humans, including hyperuricemia. Based on sequence analysis Drosophila CG30016 gene was hypothesised to encode 5- HIUH. CG30016 knockout flies were examined to identify Malpighian tubules phenotype, and shortened lifespan might reflect kidney disorders in hyperuricemia in humans. Moreover, LC-MS analysis of mutant tubules revealed that CG30016 is involved in purine metabolism, and specifically urate degradation pathway. However, the exact role of the gene has not been identified, and the complete method for gap filling has not been developed. Nevertheless, thanks to the work presented here, we are a step closer towards the development of a gap-filling pipeline in Drosophila melanogaster GEM. Importantly, the areas that require further optimisation were identified and are the focus of future research. Moreover, LC-MS analysis confirmed that tubules rather than the whole fly were more suitable for metabolomics analysis of purine metabolism. Previously, Dow/Davies lab has generated the most complete tissue-specific transcriptomic atlas for Drosophila – FlyAtlas.org, which provides data on gene expression across multiple tissues of adult fly and larva. FlyAtlas revealed that transcripts of many genes are enriched in specific Drosophila tissues, and that it is possible to deduce the functions of individual tissues within the fly. Based on FlyAtlas data, it has become clear that the fly (like other metazoan species) must be considered as a set of tissues, each 2 with its own distinct transcriptional and functional profile. Moreover, it revealed that for about 30% of the genome, reverse genetic methods (i.e. mutation in an unknown gene followed by observation of phenotype) are only useful if specific tissues are investigated. Based on the FlyAtlas findings, we aimed to build a primary tissue-specific metabolome of the fruit fly, in order to establish whether different Drosophila tissues have different metabolomes and if they correspond to tissue-specific transcriptome of the fruit fly (FlyAtlas.org). Different fly tissues have been dissected and their metabolome elucidated using LC-MS. The results confirmed that tissue metabolomes differ significantly from each other and from the whole fly, and that some of these differences can be correlated to the tissue function. The results illustrate the need to study individual tissues as well as the whole organism. It is clear that some metabolites that play an important role in a given tissue might not be detected in the whole fly sample because their abundance is much lower in comparison to other metabolites present in all tissues, which prevent the detection of the tissue-specific compound.
Resumo:
Otto-von-Guericke-Universität Magdeburg, Fakultät für Naturwissenschaften, Dissertation, 2016
Resumo:
2011