837 resultados para Offshore wind energy
Resumo:
Spatial Decision Support System (SDSS) assist in strategic decision-making activities considering spatial and temporal variables, which help in Regional planning. WEPA is a SDSS designed for assessment of wind potential spatially. A wind energy system transforms the kinetic energy of the wind into mechanical or electrical energy that can be harnessed for practical use. Wind energy can diversify the economies of rural communities, adding to the tax base and providing new types of income. Wind turbines can add a new source of property value in rural areas that have a hard time attracting new industry. Wind speed is extremely important parameter for assessing the amount of energy a wind turbine can convert to electricity: The energy content of the wind varies with the cube (the third power) of the average wind speed. Estimation of the wind power potential for a site is the most important requirement for selecting a site for the installation of a wind electric generator and evaluating projects in economic terms. It is based on data of the wind frequency distribution at the site, which are collected from a meteorological mast consisting of wind anemometer and a wind vane and spatial parameters (like area available for setting up wind farm, landscape, etc.). The wind resource is governed by the climatology of the region concerned and has large variability with reference to space (spatial expanse) and time (season) at any fixed location. Hence the need to conduct wind resource surveys and spatial analysis constitute vital components in programs for exploiting wind energy. SDSS for assessing wind potential of a region / location is designed with user friendly GUI’s (Graphic User Interface) using VB as front end with MS Access database (backend). Validation and pilot testing of WEPA SDSS has been done with the data collected for 45 locations in Karnataka based on primary data at selected locations and data collected from the meteorological observatories of the India Meteorological Department (IMD). Wind energy and its characteristics have been analysed for these locations to generate user-friendly reports and spatial maps. Energy Pattern Factor (EPF) and Power Densities are computed for sites with hourly wind data. With the knowledge of EPF and mean wind speed, mean power density is computed for the locations with only monthly data. Wind energy conversion systems would be most effective in these locations during May to August. The analyses show that coastal and dry arid zones in Karnataka have good wind potential, which if exploited would help local industries, coconut and areca plantations, and agriculture. Pre-monsoon availability of wind energy would help in irrigating these orchards, making wind energy a desirable alternative.
Resumo:
On the backdrop of climate change scenario, there is emphasis on controlling emission of greenhouse gases such as CO2. Major thrust being seen worldwide as well as in India is for generation of electricity from renewable sources like solar and wind. Chitradurga area of Karnataka is identified as a suitable location for the production of electricity from wind turbines because of high wind-energy resource. The power generated and the performance of 18 wind turbines located in this region are studied based on the actual field data collected over the past seven years. Our study shows a good prospect for expansion of power production using wind turbines.
Resumo:
27 p.
Resumo:
In this paper, a real time sliding mode control scheme for a variable speed wind turbine that incorporates a doubly feed induction generator is described. In this design, the so-called vector control theory is applied, in order to simplify the system electrical equations. The proposed control scheme involves a low computational cost and therefore can be implemented in real-time applications using a low cost Digital Signal Processor (DSP). The stability analysis of the proposed sliding mode controller under disturbances and parameter uncertainties is provided using the Lyapunov stability theory. A new experimental platform has been designed and constructed in order to analyze the real-time performance of the proposed controller in a real system. Finally, the experimental validation carried out in the experimental platform shows; on the one hand that the proposed controller provides high-performance dynamic characteristics, and on the other hand that this scheme is robust with respect to the uncertainties that usually appear in the real systems.
Resumo:
We address the valuation of an operating wind farm and the finite-lived option to invest in it under different reward/support schemes: a constant feed-in tariff, a premium on top of the electricity market price (either a fixed premium or a variable subsidy such as a renewable obligation certificate or ROC), and a transitory subsidy, among others. Futures contracts on electricity with ever longer maturities enable market-based valuations to be undertaken. The model considers up to three sources of uncertainty: the electricity price, the level of wind generation, and the certificate (ROC) price where appropriate. When analytical solutions are lacking, we resort to a trinomial lattice combined with Monte Carlo simulation; we also use a two-dimensional binomial lattice when uncertainty in the ROC price is considered. Our data set refers to the UK. The numerical results show the impact of several factors involved in the decision to invest: the subsidy per MWh generated, the initial lump-sum subsidy, the maturity of the investment option, and electricity price volatility. Different combinations of variables can help bring forward investments in wind generation. One-off policies, e.g., a transitory initial subsidy, seem to have a stronger effect than a fixed premium per MWh produced.
Resumo:
The potential impact that offshore wind farms may cause on nearby marine radars should be considered before the wind farm is installed. Strong radar echoes from the turbines may degrade radars' detection capability in the area around the wind farm. Although conventional computational methods provide accurate results of scattering by wind turbines, they are not directly implementable in software tools that can be used to conduct the impact studies. This paper proposes a simple model to assess the clutter that wind turbines may generate on marine radars. This method can be easily implemented in the system modeling software tools for the impact analysis of a wind farm in a real scenario.
Resumo:
Innovation policies play an important role throughout the development process of emerging industries. However, existing policy studies view the process as a black-box, and fail to understand the policy-industry interactions through the process. This paper aims to develop an integrated technology roadmapping tool, in order to facilitate the better understanding of policy heterogeneity at the different stages of new energy industries in China. Through the case study of Chinese wind energy equipment manufacturing industry, this paper elaborates the dynamics between policy and the growth process of the industry. Further, this paper generalizes some Chinese specifics for the policy-industry interactions. As a practical output, this study proposes a policy-technology roadmapping framework that maps policy-market-product- technology interactions in response to the requirement for analyzing and planning the development of new industries in emerging economies (e.g. China). This paper will be of interest to policy makers, strategists, investors, and industrial experts. © 2011 IEEE.
Resumo:
Monopile foundations, currently designed using the p-y method, are technically viable in supporting larger offshore wind turbines in waters to a depth of 30 m. The p-y method was developed to better understand the behavior of laterally loaded long slender piles required for the offshore oil and gas installations. The lateral load-deformation behavior of two monopiles, 5 and 7.5 m dia, installed in soft clays of varying undrained shear strength and stiffness, was studied. A combination of axial and lateral loads expected at an offshore wind farm location with a water depth of 30 m was used in the analysis. It was established that the Matlock (1970) p-y curves are too soft and under-estimate the ultimate soil reaction at all depths except at the monopile tip. At the pile tip, the base shear was not accounted for in the p-y curves, hence resulting in the over-estimation of the soil reaction. Consequently, the Matlock (1970) p-y formulation significantly underestimates the monopile ultimate lateral capacity. The use of the Matlock (1970) p-y method would result in over-conservative designs of monopiles for offshore wind turbines. This is an abstract of a paper presented at the Offshore Technology Conference (Houston, TX 5/6-9/2013).
Resumo:
Offshore wind turbines impose unique combinations of loads on their foundations. They impose large lateral loads in relation to vertical loading which must be resisted, but are also subject to approximately a million cycles of loading through their design life. As the performance of these systems is dominated by their dynamic response, the stiffness of the foundations becomes critical in design. Conventional design codes which are conservative by virtue of predicting a lower stiffness than might be observed in practice may not be conservative for these problems. By utilizing centrifuge modeling the behaviour of monopile foundations in both sands and clays under cyclic loading can be investigated in order to predict the dynamic behaviour of these systems. © 2010 Taylor & Francis Group, London.
Resumo:
Wind energy is the energy source that contributes most to the renewable energy mix of European countries. While there are good wind resources throughout Europe, the intermittency of the wind represents a major problem for the deployment of wind energy into the electricity networks. To ensure grid security a Transmission System Operator needs today for each kilowatt of wind energy either an equal amount of spinning reserve or a forecasting system that can predict the amount of energy that will be produced from wind over a period of 1 to 48 hours. In the range from 5m/s to 15m/s a wind turbine’s production increases with a power of three. For this reason, a Transmission System Operator requires an accuracy for wind speed forecasts of 1m/s in this wind speed range. Forecasting wind energy with a numerical weather prediction model in this context builds the background of this work. The author’s goal was to present a pragmatic solution to this specific problem in the ”real world”. This work therefore has to be seen in a technical context and hence does not provide nor intends to provide a general overview of the benefits and drawbacks of wind energy as a renewable energy source. In the first part of this work the accuracy requirements of the energy sector for wind speed predictions from numerical weather prediction models are described and analysed. A unique set of numerical experiments has been carried out in collaboration with the Danish Meteorological Institute to investigate the forecast quality of an operational numerical weather prediction model for this purpose. The results of this investigation revealed that the accuracy requirements for wind speed and wind power forecasts from today’s numerical weather prediction models can only be met at certain times. This means that the uncertainty of the forecast quality becomes a parameter that is as important as the wind speed and wind power itself. To quantify the uncertainty of a forecast valid for tomorrow requires an ensemble of forecasts. In the second part of this work such an ensemble of forecasts was designed and verified for its ability to quantify the forecast error. This was accomplished by correlating the measured error and the forecasted uncertainty on area integrated wind speed and wind power in Denmark and Ireland. A correlation of 93% was achieved in these areas. This method cannot solve the accuracy requirements of the energy sector. By knowing the uncertainty of the forecasts, the focus can however be put on the accuracy requirements at times when it is possible to accurately predict the weather. Thus, this result presents a major step forward in making wind energy a compatible energy source in the future.
Resumo:
This work illustrates the influence of wind forecast errors on system costs, wind curtailment and generator dispatch in a system with high wind penetration. Realistic wind forecasts of different specified accuracy levels are created using an auto-regressive moving average model and these are then used in the creation of day-ahead unit commitment schedules. The schedules are generated for a model of the 2020 Irish electricity system with 33% wind penetration using both stochastic and deterministic approaches. Improvements in wind forecast accuracy are demonstrated to deliver: (i) clear savings in total system costs for deterministic and, to a lesser extent, stochastic scheduling; (ii) a decrease in the level of wind curtailment, with close agreement between stochastic and deterministic scheduling; and (iii) a decrease in the dispatch of open cycle gas turbine generation, evident with deterministic, and to a lesser extent, with stochastic scheduling.