959 resultados para Off-gas analysis
Resumo:
Since the analysis of the lunar rocks and soil samples, brought to Earth by the Apollo missions, it is believed that the Moon has a waterless nature and also other volatile species are strongly depleted. Advancement in analysis techniques helped to identify water and other volatile species in lunar volcanic glasses. Additionally, recent lunar space missions detected water and volatile organic compounds in the region of the lunar poles where permanently shadowed craters are existing. All known lunar soil samples available on Earth come from the lunar near side, close to the equator. To verify the most recent measurement results and to enhance the knowledge of the geological history of the Moon it is of high interest to perform in situ measurements on the lunar poles. For this reason the Russian space agency, Roskosmos, developed aprogram for the scientific exploration of the lunar poles. The Gas Analysis Package (GAP) is part of the selected scientific payload aboard the Luna-Resurs Lander. This instrument uses pyrolytic cells and will apply laser spectroscopy, gas chromatography and mass spectrometry to detect and analyze volatile components trapped in the lunar soil. An existing ion optical design of a compact reflectron type time-of-flight mass spectrometer, originally built for the MEAP/P-BACE balloon mission, was chosen as a part of the GAP instrument. The scope of this thesis is the development of the interface between gas chromatography (GC) and this Neutral Gas Mass Spectrometer (NGMS) to perform coupled GC-MS measurements. In the first part of this thesis the interfacing concept was developed and verified by coupling the NGMS prototype to gas chromatography. The second part of this thesis is devoted to the development of the NGMS flight version.
Resumo:
Layered doubly hydroxides (LDHs) also known as hydrotalcites or anionic clays are a group of clay minerals that have shown promise for the removal of toxic anions from water through both anion exchange and a process known as the reformation effect. This project has involved the preparation and characterisation of LDH materials as well as the investigation of their ability to remove selected anions from aqueous solutions by the reformation effect. The LDH materials were successfully prepared from magnesium, aluminium, zinc and chromium chloride salts using the co-precipitation method. Samples were characterised using powder X-ray diffraction (XRD) and thermogravimetry (TG) to confirm the presence of LDHs. Powder XRD revealed a characteristic LDH structure for all LDH samples. Thermal Analysis showed decomposition usual occurred through a three or four step process as expected for LDHs. Preliminary investigations of the removal of sulfate, nitrate and fluoride by an Mg/Al LDH were carried out, and the products were characterised using XRD and TG which showed that an LDH material similar to the original hydrotalcite was formed after reformation. A Zn/Al LDH was investigated as a potential sorbent material for the removal of iodine and iodide from water. It was found that the LDH was a suitable adsorbent which is able to remove almost all of the iodine present in the test solutions. Again, the products were characterised by XRD, TG and evolved gas mass spectrometry (EGMS) in an attempt to better understand the iodine removal process. Powder XRD showed successful reformation of the LDH structure and TG/EGMS showed that only a small amount of iodine species were lost during thermal decomposition. Finally, the mineral stichtite a Mg/Cr LDH was successfully synthesised and investigated using XRD, TG and EGMS. Unfortunately, due to lack of time it was not possible to identify any new uses for the mineral stichtite in the current project.
Resumo:
Substantial research efforts have been expended to deal with the complexity of concurrent systems that is inherent to their analysis, e.g., works that tackle the well-known state space explosion problem. Approaches differ in the classes of properties that they are able to suitably check and this is largely a result of the way they balance the trade-off between analysis time and space employed to describe a concurrent system. One interesting class of properties is concerned with behavioral characteristics. These properties are conveniently expressed in terms of computations, or runs, in concurrent systems. This article introduces the theory of untanglings that exploits a particular representation of a collection of runs in a concurrent system. It is shown that a representative untangling of a bounded concurrent system can be constructed that captures all and only the behavior of the system. Representative untanglings strike a unique balance between time and space, yet provide a single model for the convenient extraction of various behavioral properties. Performance measurements in terms of construction time and size of representative untanglings with respect to the original specifications of concurrent systems, conducted on a collection of models from practice, confirm the scalability of the approach. Finally, this article demonstrates practical benefits of using representative untanglings when checking various behavioral properties of concurrent systems.
Resumo:
The thermal decomposition of the coal-derived pyrite was studied using thermogravimetry combining with Fourier-transform infrared spectroscopy (TG-FTIR) techniques to gain knowledge on the SO2 gas evolution process and formation mechanism during the thermal decomposition of the coal-derived pyrite. The results showed that the thermal decomposition of the coal-derived pyrite which started at about 400 ◦C was complete at 600 ◦C; the gas evolved can be established by combining the DTG peak, the Gram–Schmidt curve and in situ FTIR spectroscopic evolved gas analysis. It can be observed from the spectra that the pyrolysis products for the sample mainly vary in quantity, but not in species. It was proposed that the oxidation of the coal-derived pyrite started at about 400 ◦C and that pyrrhotite and hematite were formed as primary products. The SO2 released by the thermal decomposition of the coal-derived pyrite mainly occurred in the first pyrolysis stage between 410 and 470 ◦C with the maximum rate at 444 ◦C. Furthermore, the SO2 gas evolution and formation mechanism during the thermal decomposition of the coal-derived pyrite has been proposed.
Resumo:
The current state of knowledge in relation to first flush does not provide a clear understanding of the role of rainfall and catchment characteristics in influencing this phenomenon. This is attributed to the inconsistent findings from research studies due to the unsatisfactory selection of first flush indicators and how first flush is defined. The research study discussed in this thesis provides the outcomes of a comprehensive analysis on the influence of rainfall and catchment characteristics on first flush behaviour in residential catchments. Two sets of first flush indicators are introduced in this study. These indicators were selected such that they are representative in explaining in a systematic manner the characteristics associated with first flush. Stormwater samples and rainfall-runoff data were collected and recorded from stormwater monitoring stations established at three urban catchments at Coomera Waters, Gold Coast, Australia. In addition, historical data were also used to support the data analysis. Three water quality parameters were analysed, namely, total suspended solids (TSS), total phosphorus (TP) and total nitrogen (TN). The data analyses were primarily undertaken using multi criteria decision making methods, PROMETHEE and GAIA. Based on the data obtained, the pollutant load distribution curve (LV) was determined for the individual rainfall events and pollutant types. Accordingly, two sets of first flush indicators were derived from the curve, namely, cumulative load wash-off for every 10% of runoff volume interval (interval first flush indicators or LV) from the beginning of the event and the actual pollutant load wash-off during a 10% increment in runoff volume (section first flush indicators or P). First flush behaviour showed significant variation with pollutant types. TSS and TP showed consistent first flush behaviour. However, the dissolved fraction of TN showed significant differences to TSS and TP first flush while particulate TN showed similarities. Wash-off of TSS, TP and particulate TN during the first 10% of the runoff volume showed no influence from corresponding rainfall intensity. This was attributed to the wash-off of weakly adhered solids on the catchment surface referred to as "short term pollutants" or "weakly adhered solids" load. However, wash-off after 10% of the runoff volume showed dependency on the rainfall intensity. This is attributed to the wash-off of strongly adhered solids being exposed when the weakly adhered solids diminish. The wash-off process was also found to depend on rainfall depth at the end part of the event as the strongly adhered solids are loosened due to impact of rainfall in the earlier part of the event. Events with high intensity rainfall bursts after 70% of the runoff volume did not demonstrate first flush behaviour. This suggests that rainfall pattern plays a critical role in the occurrence of first flush. Rainfall intensity (with respect to the rest of the event) that produces 10% to 20% runoff volume play an important role in defining the magnitude of the first flush. Events can demonstrate high magnitude first flush when the rainfall intensity occurring between 10% and 20% of the runoff volume is comparatively high while low rainfall intensities during this period produces low magnitude first flush. For events with first flush, the phenomenon is clearly visible up to 40% of the runoff volume. This contradicts the common definition that first flush only exists, if for example, 80% of the pollutant mass is transported in the first 30% of runoff volume. First flush behaviour for TN is different compared to TSS and TP. Apart from rainfall characteristics, the composition and the availability of TN on the catchment also play an important role in first flush. The analysis confirmed that events with low rainfall intensity can produce high magnitude first flush for the dissolved fraction of TN, while high rainfall intensity produce low dissolved TN first flush. This is attributed to the source limiting behaviour of dissolved TN wash-off where there is high wash-off during the initial part of a rainfall event irrespective of the intensity. However, for particulate TN, the influence of rainfall intensity on first flush characteristics is similar to TSS and TP. The data analysis also confirmed that first flush can occur as high magnitude first flush, low magnitude first flush or non existence of first flush. Investigation of the influence of catchment characteristics on first flush found that the key factors that influence the phenomenon are the location of the pollutant source, spatial distribution of the pervious and impervious surfaces in the catchment, drainage network layout and slope of the catchment. This confirms that first flush phenomenon cannot be evaluated based on a single or a limited set of parameters as a number of catchment characteristics should be taken into account. Catchments where the pollutant source is located close to the outlet, a high fraction of road surfaces, short travel time to the outlet, with steep slopes can produce high wash-off load during the first 50% of the runoff volume. Rainfall characteristics have a comparatively dominant impact on the wash-off process compared to the catchment characteristics. In addition, the pollutant characteristics also should be taken into account in designing stormwater treatment systems due to different wash-off behaviour. Analysis outcomes confirmed that there is a high TSS load during the first 20% of the runoff volume followed by TN which can extend up to 30% of the runoff volume. In contrast, high TP load can exist during the initial and at the end part of a rainfall event. This is related to the composition of TP available for the wash-off.
Resumo:
The system for high utilization of LNG cold energy is proposed by use of process simulator. The proposed design is a closed loop system, and composed by a Hampson type heat exchanger, turbines, pumps and advanced humid air turbine (AHAT) or Gas turbine combined cycle (GTCC). Its heat sources are Boil-off gas and cooling water for AHAT or GTCC. The higher cold exergy recovery to power can be about 38 to 56% as compared to the existing cold power generation of about 20% with a Rankine cycle of a single component. The advantage of the proposed system is to reduce the number of heat exchangers. Furthermore, the environmental impact is minimized because the proposed design is a closed loop system. A life cycle comparative cost is calculated to demonstrate feasibility of the proposed design. The development of the Hampson type exchangers is expected to meet the key functional requirements and will result in much higher LNG cold exergy recovery and the overall system performance i.e. re-gasification. Additionally, the proposed design is expected to provide flexibility to meet different gas pressure suited for the deregulation of energy system in Japan and higher reliability for an integrated boil-off gas system.
Resumo:
The purpose of this study is to examine the changes of energy cost during a high-heeled continuous jogging.Thirteen healthy female volunteers jointed in this study with heel height of the shoes varied from 1, 4.5 and 7 cm, respectively. Each subjects jogged on the treadmill with K4b2 portable gas analysis system. The results of this study showed that ventilnation, relative oxygen consumption and energy expenditure increased with the increase of heel height and these values shows significantly larger when the heel height reached to 7 cm. Present study suggest that wearing high heel shoes jogging could directly increase energy consumption, causing neuromuscular fatigue.
Resumo:
Lead zir conyl oxalate hexahydrate (LZO) and lead titanyl zirconyl oxalate hydrate (LTZO) are prepared and characterized. Their thermal decompositions have been investigated by thermoanalytical and gas analysis techniques. The decomposition in air or oxygen has three steps — dehydration, decomposition of the oxalate to a carbonate and the decomposition of carbonate to PbZrO3. In non oxidising atmosphere, partial reduction of Pb(II) to Pb(0) takes place at the oxalate decomposition step. The formation of free metallic lead affects the stoichiometry of the intermediate carbonate and yields a mixture of Pb(Ti,Zr)O3 and ZrO2 as the final products. By maintaining oxidising atmosphere and low heating rate, direct preparation of stoichiometric, crystalline Pb(Ti,Zr)O3 at 550°C is possible from the corresponding oxalate precursor.
Resumo:
Single pellet experiments have been carried out in a nitrogen atmosphere to study the reduction of hematite by graphite in the temperature range 925 to 1060°C. The effect of variables such as c/Fe2O3 molar ratio, pellet size, and so forth, has been investigated. Gas analysis data show a continuous decrease in CO2/CO ratio during reduction, the values being far away from Fe/FeO equilibrium for wustite reduction by CO. The activation energies associated with different degrees of reduction appear to be widely different suggesting a possible changeover in reaction mechanism during the progress of reduction. X-ray diffraction studies confirm the stepwise nature of hematite reduction.
Resumo:
Opioids are most commonly used for treatment of severe pain. However, the fear of respiratory depression has restricted the use of opioids. Depending on the monitoring system used, different modes of opioid respiratory effects have been noted in previous studies. All opioids also cause alterations in hemodynamics at least to some extent. The main goal of this series of investigations was to elucidate the native ventilatory and hemodynamic effects of different opioids. Studies I-IV each involved 8 healthy male volunteers. Study V involved 13 patients with lower or upper extremity traumas. The opioids studied were morphine, oxycodone, pethidine, fentanyl, alfentanil, tramadol and ketamine. The respiratory parameters used in this study were breathing pattern measured with respiratory inductive plethysmography, gas exchange measured with indirect calorimetry, blood gas analysis and pulse oximetry. Hemodynamics was measured with arterial blood pressure, heart rate and oxygen consumption. Plasma catecholamine and histamine concentrations were also determined. All opioids studied caused an alteration in respiratory function. Respiratory rate, alveolar ventilation and minute ventilation decreased, while tidal volume increased in most situations. Breathing pattern was also significantly affected after opioid administration. The respiratory depression caused by oxycodone was deeper than the one caused by same dose of morphine. An equianalgesic dose of tramadol caused markedly smaller respiratory depression compared to pethidine. The potency ratio for respiratory depression of fentanyl and alfentanil is similar to analgesic potency ratio studied elsewhere. Racemic ketamine attenuated the respiratory depression caused by fentanyl, if measured with minute ventilation. However, this effect was counteracted by increased oxygen consumption. Supplemental oxygen did not offer any benefits, nor did it cause any atelectasis when given to opioid treated trauma patients. Morphine caused a transient hemodynamic stimulation, which was accompanied by an increase in oxygen consumption. Oxycodone, alfentanil, fentanyl, tramadol and pethidine infusions had minimal effects on hemodynamics. Plasma catecholamine concentrations were increased after high dose opioid administration. Plasma histamine concentrations were not elevated after morphine nor oxycodone administration. Respiratory depression is a side effect noted with all opioids. The profile of this phenomenon is quite similar with different opioid-receptor agonists. The hemodynamic effects of opioids may vary depending on the opioid used, morphine causing a slight hemodynamic stimulation. However, all opioids studied could be considered hemodynamically stable.
Resumo:
The Dissolved Gas Analysis (DGA) a non destructive test procedure, has been in vogue for a long time now, for assessing the status of power and related transformers in service. An early indication of likely internal faults that may exist in Transformers has been seen to be revealed, to a reasonable degree of accuracy by the DGA. The data acquisition and subsequent analysis needs an expert in the concerned area to accurately assess the condition of the equipment. Since the presence of the expert is not always guaranteed, it is incumbent on the part of the power utilities to requisition a well planned and reliable artificial expert system to replace, at least in part, an expert. This paper presents the application of Ordered Ant Mner (OAM) classifier for the prediction of involved fault. Secondly, the paper also attempts to estimate the remaining life of the power transformer as an extension to the elapsed life estimation method suggested in the literature.
Resumo:
Cardiac surgery involving cardiopulmonary bypass (CPB) induces activation of inflammation and coagulation systems and is associated with ischemia-reperfusion injury (I/R injury)in various organs including the myocardium, lungs, and intestine. I/R injury is manifested as organ dysfunction. Thrombin, the key enzyme of coagulation , plays a cenral role also in inflammation and contributes to regulation of apoptosis as well. The general aim of this thesis was to evaluate the potential of thrombin inhibition in reducing the adverse effects of I/R injury in myocardium, lungs, and intestine associated with the use of CPB and cardiac surgery. Forty five pigs were used for the studies. Two randomized blinded studies were performed. Animals underwent 75 min of normothermic CPB, 60 min of aortic clamping, and 120 min of reperfusion period. Twenty animals received iv. recombinant hirudin, a selective and effective inbitor of thrombin, or placebo. In a similar setting, twenty animals received an iv-bolus (250 IU/kg) of antithrombin (AT) or placebo. An additional group of 5 animals received 500 IU/kg in an open label setting to test dose response. Generation of thrombin (TAT), coagulation status (ACT), and hemodynamics were measured. Intramucosal pH and pCO2 were measured from the luminal surface of ileum using tonometry simultaneusly with arterial gas analysis. In addition, myocardial, lung, and intestinal biopsies were taken to quantitate leukocyte infiltration (MPO), for histological evaluation, and detection of apoptosis (TUNEL, caspase 3). In conclusion, our data suggest that r-hirudin may be an effective inhibitor of reperfusion induced thrombin generation in addition to being a direct inhibitor of preformed thrombin. Overall, the results suggest that inhibition of thrombin, beyond what is needed for efficient anticoagulation by heparin, has beneficial effects on myocardial I/R injury and hemodynamics during cardiac surgery and CPB. We showed that infusion of the thrombin inhibitor r-hirudin during reperfusion was associated with attenuated post ischemia left ventricular dysfunction and decreased systemic vascular resistance. Consequently microvascular flow was improved during ischemia-reperfusion injury. Improved recovery of myocardium during the post-ischemic reperfusion period was associated with significantly less cardiomyocyte apoptosis and with a trend in anti-inflammatory effects. Thus, inhibition of reperfusion induced thrombin may offer beneficial effects by mechanisms other than direct anticoagulant effects. AT, in doses with a significant anticoagulant effect, did not alleviate myocardial I/R injury in terms of myocardial recovery, histological inflammatory changes or post-ischemic troponin T release. Instead, AT attenuated reperfusion induced increase in pulmonary pressure after CPB. Taken the clinical significance of postoperative pulmonary hemodynamics in patients undergoing cardiopulmonary bypass, the potential positive regulatory role of AT and clinical implications needs to be studied further. Inflammatory response in the gut wall proved to be poorly associated with perturbed mucosal perfusion and the animals with the least neutrophil tissue sequestration and I/R related histological alterations tended to have the most progressive mucosal hypoperfusion. Thus, mechanisms of low-flow reperfusion injury during CPB can differ from the mechanisms seen in total ischemia reperfusion injury.
Resumo:
Conditions for the preparation of stoichiometric barium zirconyl oxalate heptahydrate (BZO) have been standardized. The thermal decomposition of BZO has been investigated employing TG, DTG and DTA techniques and chemical and gas analysis. The decomposition proceeds through four steps and is not affected much by the surrounding gas atmosphere. Both dehydration and oxalate decomposition take place in two steps. The formation of a transient intermediate containing both oxalate and carbonate groups is inferred. The decomposition of oxalate groups results in a carbonate of composition Ba2Zr2OsCO3, which decomposes between 600 and 800 ~ and yields barium zirconate. Chemical analysis, IR spectra and X-ray powder diffraction data support the identity of the intermediate as a separate entity.
Resumo:
Conditions for the preparation of stoichiometric barium zirconyl oxalate heptahydrate (BZO) have been standardized. The thermal decomposition of BZO has been investigated employing TG, DTG and DTA techniques and chemical and gas analysis. The decomposition proceeds through four steps and is not affected much by the surrounding gas atmosphere. Both dehydration and oxalate decomposition take place in two steps. The formation of a transient intermediate containing both oxalate and carbonate groups is inferred. The decomposition of oxalate groups results in a carbonate of composition Ba2Zr2O5CO3, which decomposes between 600 and 800° and yields barium zirconate. Chemical analysis, IR spectra and X-ray powder diffraction data support the identity of the intermediate as a separate entity.Die Bedingungen für die Herstellung von stöchiometrischem Barium-zirconyl-oxalat Heptahydrat (BZO) wurden standardisiert. Die thermische Zersetzung von BZO wurde unter Einsatz der TG-, DTG- und DTA, sowie der chemischen und Gasanalyse untersucht. Die Zersetzung verläuft über vier Stufen und wird von der umgebenden Gasathmosphäre nicht besonders beeinflusst. Sowohl die Dehydratisierung als auch die Oxalatzersetzung erfolgt in zwei Stufen. Die Bildung einer intermediären Übergangsverbindung mit sowohl Oxalat- als auch Carbonatgruppen wirken hierbei mit. Die Zersetzung der Oxalatgruppen ergibt ein Carbonat der Zusammensetzung Ba2Zr2O5CO3, das zwischen 600 und 800° zersetzt wird und Bariumzirconat ergibt. Die Angaben der chemischen Analyse, der IR-Spekren und der Röntgen-Pulver-Diffraktion unterstützen die Identität der Intermediärverbindung als eine separate Einheit.On a standardisé les conditions de préparation de l'oxalate heptahydraté de zirconyle et de baryum (BZO) stoechiométrique. On a étudié la décomposition thermique de BZO par TG, TGD et ATD ainsi que par analyses chimiques et analyses des gaz. La décomposition a lieu en quatre étapes et n'est pas trop influencée par l'atmosphère ambiante. La déshydratation et la décomposition de l'oxalate ont lieu en deux étapes. Il se forme un composé intermédiaire de transition contenant à la fois les groupes oxalate et carbonate. La décomposition des groupes oxalate fournit un carbonate de composition Ba2Zr2O5CO3 qui se décompose entre 600 et 800° pour fournir du zirconate de baryum. L'analyse chimique, les spectres IR et la diffraction des rayons X sur poudre, apportent les preuves de l'existence d'un composé intermédiaire comme entité séparée.
Resumo:
This paper describes techniques to estimate the worst case execution time of executable code on architectures with data caches. The underlying mechanism is Abstract Interpretation, which is used for the dual purposes of tracking address computations and cache behavior. A simultaneous numeric and pointer analysis using an abstraction for discrete sets of values computes safe approximations of access addresses which are then used to predict cache behavior using Must Analysis. A heuristic is also proposed which generates likely worst case estimates. It can be used in soft real time systems and also for reasoning about the tightness of the safe estimate. The analysis methods can handle programs with non-affine access patterns, for which conventional Presburger Arithmetic formulations or Cache Miss Equations do not apply. The precision of the estimates is user-controlled and can be traded off against analysis time. Executables are analyzed directly, which, apart from enhancing precision, renders the method language independent.