830 resultados para Ocular biometry
Resumo:
Purpose: To investigate the influence of keratoconus on peripheral ocular aberrations. Methods: Aberrations of 7 mild and 5 moderate keratoconics were determined over a 42°horizontal x 32° vertical visual field with a modified COAS-HD aberrometer. Control data were obtained from an emmetropic group. Results: Most aberrations in keratoconics showed field dependence predominately along the vertical meridian. Mean spherical equivalent M, oblique astigmatism J45 and regular astigmatism J180 refraction components and total root mean square aberrations (excluding defocus) had high magnitudes in the inferior visual field. The rates of change of aberrations were higher in moderate than in mild keratoconics. Coma was the dominant peripheral higher-order aberration in both emmetropes and keratoconics; for the latter it had high magnitudes in the centre and periphery of the visual field. Conclusion: Greater rates of change of aberrations across the visual field occurred for the keratoconic groups than for the emmetropic control group. Moderate keratoconics had more rapid changes in, and higher magnitudes of aberrations across the visual field than mild keratoconics. The dominant higher-order aberration for the keratoconics across the visual field was vertical coma.
Resumo:
A healthy human would be expected to show periodic blinks, making a brief closure of the eyelids. Most blinks are spontaneous, occurring regularly with no external stimulus. However a reflex blink can occur in response to external stimuli such as a bright light, a sudden loud noise, or an object approaching toward the eyes. A voluntary or forced blink is another type of blink in which the person deliberately closes the eyes and the lower eyelid raises to meet the upper eyelid. A complete blink, in which the upper eyelid touches the lower eyelid, contributes to the health of ocular surface by providing a fresh layer of tears as well as maintaining optical integrity by providing a smooth tear film over the cornea. The rate of blinking and its completeness vary depending on the task undertaken during blink assessment, the direction of gaze, the emotional state of the subjects and the method under which the blink was measured. It is also well known that wearing contact lenses (both rigid and soft lenses) can induce significant changes in blink rate and completeness. It is been established that efficient blinking plays an important role in ocular surface health during contact lens wear and for improving contact lens performance and comfort. Inefficient blinking during contact lens wear may be related to a low blink rate or incomplete blinking and can often be a reason for dry eye symptoms or ocular surface staining. It has previously been shown that upward gaze can affect blink rate, causing it to become faster. In the first experiment, it was decided to expand on previous studies in this area by examining the effect of various gaze directions (i.e. upward gaze, primary gaze, downward gaze and lateral gaze) as well as head angle (recumbent position) on normal subjects’ blink rate and completeness through the use of filming with a high-speed camera. The results of this experiment showed that as the open palpebral aperture (and exposed ocular surface area) increased from downward gaze to upward gaze, the number of blinks significantly increased (p<0.04). Also, the size of closed palpebral aperture significantly increased from downward gaze to upward gaze (p<0.005). A weak positive correlation (R² = 0.18) between the blink rate and ocular surface area was found in this study. Also, it was found that the subjects showed 81% complete blinks, 19% incomplete blinks and 2% of twitch blinks in primary gaze, consistent with previous studies. The difference in the percentage of incomplete blinks between upward gaze and downward gaze was significant (p<0.004), showing more incomplete blinks in upward gaze. The findings of this experiment suggest that while blink rate becomes slower in downward gaze, the completeness of blinking is typically better, thereby potentially reducing the risk of tear instability. On the other hand, in upward gaze while the completeness of blinking becomes worse, this is potentially offset by increased blink frequency. In addition, blink rate and completeness were not affected by lateral gaze or head angle, possibly because these conditions have similar size of the open palpebral aperture compared with primary gaze. In the second experiment, an investigation into the changes in blink rate and completeness was carried out in primary gaze and downward gaze with soft and rigid contact lenses in unadapted wearers. Not surprisingly, rigid lens wear caused a significant increase in the blink rate in both primary (p<0.001) and downward gaze (p<0.02). After fitting rigid contact lenses, the closed palpebral aperture (blink completeness) did not show any changes but the open palpebral aperture showed a significant narrowing (p<0.04). This might occur from the subjects’ attempt to avoid interaction between the upper eyelid and the edge of the lens to minimize discomfort. After applying topical anaesthetic eye drops in the eye fitted with rigid lenses, the increased blink rate dropped to values similar to that before lens insertion and the open palpebral aperture returned to baseline values, suggesting that corneal and/or lid margin sensitivity was mediating the increased blink rate and narrowed palpebral aperture. We also investigated the changes in the blink rate and completeness with soft contact lenses including a soft sphere, double slab-off toric design and periballast toric design. Soft contact lenses did not cause any significant changes in the blink rate, closed palpebral aperture, open palpebral aperture and the percentage of incomplete blinks in either primary gaze or downward gaze. After applying anaesthetic eye drops, the blink rate reduced in both primary gaze and downward gaze, however this difference was not statistically significant. The size of the closed palpebral aperture and open palpebral aperture did not show any significant changes after applying anaesthetic eye drops. However it should be noted that the effects of rigid and soft contact lenses that we observed in these studies were only the immediate reaction to contact lenses and in the longer term, it is likely that these responses will vary as the eye adapts to the presence of the lenses.
Resumo:
PURPOSE: To investigate the interocular symmetry of ocular optical, biometric and biomechanical characteristics between the more and less ametropic eyes of myopic anisometropes. METHODS: Thirty-four young, healthy myopic anisometropic adults (≥ 1 D spherical equivalent difference between eyes) without amblyopia or strabismus were recruited. A range of biometric and optical parameters were measured in the more and less ametropic eye of each subject including; axial length, ocular aberrations, intraocular pressure and corneal topography, thickness and biomechanics. Morphology of the anterior eye in primary and downward gaze was examined using custom software analysis of high resolution digital images. Ocular sighting dominance was assessed using the hole-in-the-card test. RESULTS: Mean absolute spherical equivalent anisometropia was 1.74 ± 0.74 D. There was a strong correlation between the degree of anisometropia and the interocular difference in axial length (r = 0.81, p < 0.001). The more and less ametropic fellow eyes displayed a high degree of interocular symmetry for the majority of biometric, biomechanical and optical parameters measured. When the level of anisometropia exceeded 1.75 D (n = 10), the more myopic eye was the dominant sighting eye in nine of these ten subjects. Subjects with greater levels of anisometropia (> 1.75 D) also showed high levels of correlation between the dominant and non-dominant eyes in their biometric, biomechanical and optical characteristics. CONCLUSIONS: Although significantly different in axial length, anisometropic eyes display a high degree of interocular symmetry for a range of anterior eye biometrics and optical parameters. For higher levels of anisometropia, the more myopic eye tends to be the dominant sighting eye.
Resumo:
We measured wave aberrations over the central 42° x 32° visual field for a 5 mm pupil for groups of 10 emmetropic (mean spherical equivalent 0.11 ± 0.50 D) and 9 myopic (MSE -3.67 ± 1.91 D) young adults. Relative peripheral refractive errors over the measured field were generally myopic in both groups. Mean values of were almost constant across the measured field and were more positive in emmetropes (+0.023 ± 0.043 microns) than in myopes (-0.007 ± 0.045 microns). Coma varied more rapidly with field angle in myopes: modeling suggested that this difference reflected the differences in mean anterior corneal shape and axial length in the two groups. In general however, overall levels of RMS aberration differed only modestly between the two groups, implying that it is unlikely that high levels of aberration contribute to myopia development.
Resumo:
Changes in peripheral aberrations, particularly higher-order aberrations, as a function of accommodation have received little attention. Wavefront aberrations were measured for the right eyes of 9 young adult emmetropes at 38 field positions in the central 42 x 32 degrees of the visual field. Subjects accommodated monocularly to targets at vergences of either 0.3 or 4.0 D. Wavefront data for a 5 mm diameter pupil were analyzed either in terms of the vector components of refraction or Zernike coefficients and total RMS wavefront aberrations. Relative peripheral refractive error (RPRE) was myopic at both accommodation demands and showed only a slight, not statistically significant, hypermetropic shift in the vertical meridian with the higher accommodation demand. There was little change in the astigmatic components of refraction or the higher-order Zernike coefficients, apart from fourth-order spherical aberration which became more negative (by 0.10 µm) at all field locations. Although it has been suggested that nearwork and the state of peripheral refraction may play some role in myopia development, for most of our adult emmetropes any changes with accommodation in RPRE and aberration were small. Hence it seems unlikely that such changes can be of importance to late-onset myopisation.
Resumo:
We modified a commercial Hartmann-Shack aberrometer and used it to measure ocular aberrations across the central 42º horizontal x 32º vertical visual fields of five young emmetropic subjects. Some Zernike aberration coefficients show coefficient field distributions that were similar to the field dependence predicted by Seidel theory (astigmatism, oblique astigmatism, horizontal coma, vertical coma), but defocus did not demonstrate such similarity.
Resumo:
Animal models of refractive error development have demonstrated that visual experience influences ocular growth. In a variety of species, axial anisometropia (i.e. a difference in the length of the two eyes) can be induced through unilateral occlusion, image degradation or optical manipulation. In humans, anisometropia may occur in isolation or in association with amblyopia, strabismus or unilateral pathology. Non-amblyopic myopic anisometropia represents an interesting anomaly of ocular growth, since the two eyes within one visual system have grown to different endpoints. These experiments have investigated a range of biometric, optical and mechanical properties of anisometropic eyes (with and without amblyopia) with the aim of improving our current understanding of asymmetric refractive error development. In the first experiment, the interocular symmetry in 34 non-amblyopic myopic anisometropes (31 Asian, 3 Caucasian) was examined during relaxed accommodation. A high degree of symmetry was observed between the fellow eyes for a range of optical, biometric and biomechanical measurements. When the magnitude of anisometropia exceeded 1.75 D, the more myopic eye was almost always the sighting dominant eye. Further analysis of the optical and biometric properties of the dominant and non-dominant eyes was conducted to determine any related factors but no significant interocular differences were observed with respect to best-corrected visual acuity, corneal or total ocular aberrations during relaxed accommodation. Given the high degree of symmetry observed between the fellow eyes during distance viewing in the first experiment and the strong association previously reported between near work and myopia development, the aim of the second experiment was to investigate the symmetry between the fellow eyes of the same 34 myopic anisometropes following a period of near work. Symmetrical changes in corneal and total ocular aberrations were observed following a short reading task (10 minutes, 2.5 D accommodation demand) which was attributed to the high degree of interocular symmetry for measures of anterior eye morphology, and corneal biomechanics. These changes were related to eyelid shape and position during downward gaze, but gave no clear indication of factors associated with near work that might cause asymmetric eye growth within an individual. Since the influence of near work on eye growth is likely to be most obvious during, rather than following near tasks, in the third experiment the interocular symmetry of the optical and biometric changes was examined during accommodation for 11 myopic anisometropes. The changes in anterior eye biometrics associated with accommodation were again similar between the eyes, resulting in symmetrical changes in the optical characteristics. However, the more myopic eyes exhibited slightly greater amounts of axial elongation during accommodation which may be related to the force exerted by the ciliary muscle. This small asymmetry in axial elongation we observed between the eyes may be due to interocular differences in posterior eye structure, given that the accommodative response was equal between eyes. Using ocular coherence tomography a reduced average choroidal thickness was observed in the more myopic eyes compared to the less myopic eyes of these subjects. The interocular difference in choroidal thickness was correlated with the magnitude of spherical equivalent and axial anisometropia. The symmetry in optics and biometrics between fellow eyes which have undergone significantly different visual development (i.e. anisometropic subjects with amblyopia) is also of interest with respect to refractive error development. In the final experiment the influence of altered visual experience upon corneal and ocular higher-order aberrations was investigated in 21 amblyopic subjects (8 refractive, 11 strabismic and 2 form deprivation). Significant differences in aberrations were observed between the fellow eyes, which varied according to the type of amblyopia. Refractive amblyopes displayed significantly higher levels of 4th order corneal aberrations (spherical aberration and secondary astigmatism) in the amblyopic eye compared to the fellow non-amblyopic eye. Strabismic amblyopes exhibited significantly higher levels of trefoil, a third order aberration, in the amblyopic eye for both corneal and total ocular aberrations. The results of this experiment suggest that asymmetric visual experience during development is associated with asymmetries in higher-order aberrations, proportional to the magnitude of anisometropia and dependent upon the amblyogenic factor. This suggests a direct link between the development of higher-order optical characteristics of the human eye and visual feedback. The results from these experiments have shown that a high degree of symmetry exists between the fellow eyes of non-amblyopic myopic anisometropes for a range of biomechanical, biometric and optical parameters for different levels of accommodation and following near work. While a single specific optical or biomechanical factor that is consistently associated with asymmetric refractive error development has not been identified, the findings from these studies suggest that further research into the association between ocular dominance, choroidal thickness and higher-order aberrations with anisometropia may improve our understanding of refractive error development.
Resumo:
To compare measurements of retinal thickness (RT) and choroidal thickness (ChT) obtained with an optical low coherence reflectometry (OLCR) biometer (Lenstar LS 900) with those obtained with a spectral domain optical coherence tomographer (SD OCT) (Copernicus SOCT HR) in young normal subjects.
Resumo:
Contact lenses are a common method for the correction of refractive errors of the eye. While there have been significant advancements in contact lens designs and materials over the past few decades, the lenses still represent a foreign object in the ocular environment and may lead to physiological as well as mechanical effects on the eye. When contact lenses are placed in the eye, the ocular anatomical structures behind and in front of the lenses are directly affected. This thesis presents a series of experiments that investigate the mechanical and physiological effects of the short-term use of contact lenses on anterior and posterior corneal topography, corneal thickness, the eyelids, tarsal conjunctiva and tear film surface quality. The experimental paradigm used in these studies was a repeated measures, cross-over study design where subjects wore various types of contact lenses on different days and the lenses were varied in one or more key parameters (e.g. material or design). Both, old and newer lens materials were investigated, soft and rigid lenses were used, high and low oxygen permeability materials were tested, toric and spherical lens designs were examined, high and low powers and small and large diameter lenses were used in the studies. To establish the natural variability in the ocular measurements used in the studies, each experiment also contained at least one “baseline” day where an identical measurement protocol was followed, with no contact lenses worn. In this way, changes associated with contact lens wear were considered in relation to those changes that occurred naturally during the 8 hour period of the experiment. In the first study, the regional distribution and magnitude of change in corneal thickness and topography was investigated in the anterior and posterior cornea after short-term use of soft contact lenses in 12 young adults using the Pentacam. Four different types of contact lenses (Silicone hydrogel/ Spherical/–3D, Silicone Hydrogel/Spherical/–7D, Silicone Hydrogel/Toric/–3D and HEMA/Toric/–3D) of different materials, designs and powers were worn for 8 hours each, on 4 different days. The natural diurnal changes in corneal thickness and curvature were measured on two separate days before any contact lens wear. Significant diurnal changes in corneal thickness and curvature within the duration of the study were observed and these were taken into consideration for calculating the contact lens induced corneal changes. Corneal thickness changed significantly with lens wear and the greatest corneal swelling was seen with the hydrogel (HEMA) toric lens with a noticeable regional swelling of the cornea beneath the stabilization zones, the thickest regions of the lenses. The anterior corneal surface generally showed a slight flattening with lens wear. All contact lenses resulted in central posterior corneal steepening, which correlated with the relative degree of corneal swelling. The corneal swelling induced by the silicone hydrogel contact lenses was typically less than the natural diurnal thinning of the cornea over this same period (i.e. net thinning). This highlights why it is important to consider the natural diurnal variations in corneal thickness observed from morning to afternoon to accurately interpret contact lens induced corneal swelling. In the second experiment, the relative influence of lenses of different rigidity (polymethyl methacrylate – PMMA, rigid gas permeable – RGP and silicone hydrogel – SiHy) and diameters (9.5, 10.5 and 14.0) on corneal thickness, topography, refractive power and wavefront error were investigated. Four different types of contact lenses (PMMA/9.5, RGP/9.5, RGP/10.5, SiHy/14.0), were worn by 14 young healthy adults for a period of 8 hours on 4 different days. There was a clear association between fluorescein fitting pattern characteristics (i.e. regions of minimum clearance in the fluorescein pattern) and the resulting corneal shape changes. PMMA lenses resulted in significant corneal swelling (more in the centre than periphery) along with anterior corneal steepening and posterior flattening. RGP lenses, on the other hand, caused less corneal swelling (more in the periphery than centre) along with opposite effects on corneal curvature, anterior corneal flattening and posterior steepening. RGP lenses also resulted in a clinically and statistically significant decrease in corneal refractive power (ranging from 0.99 to 0.01 D), large enough to affect vision and require adjustment in the lens power. Wavefront analysis also showed a significant increase in higher order aberrations after PMMA lens wear, which may partly explain previous reports of "spectacle blur" following PMMA lens wear. We further explored corneal curvature, thickness and refractive changes with back surface toric and spherical RGP lenses in a group of 6 subjects with toric corneas. The lenses were worn for 8 hours and measurements were taken before and after lens wear, as in previous experiments. Both lens types caused anterior corneal flattening and a decrease in corneal refractive power but the changes were greater with the spherical lens. The spherical lens also caused a significant decrease in WTR astigmatism (WRT astigmatism defined as major axis within 30 degrees of horizontal). Both the lenses caused slight posterior corneal steepening and corneal swelling, with a greater effect in the periphery compared to the central cornea. Eyelid position, lid-wiper and tarsal conjunctival staining were also measured in Experiment 2 after short-term use of the rigid and SiHy contact lenses. Digital photos of the external eyes were captured for lid position analysis. The lid-wiper region of the marginal conjunctiva was stained using fluorescein and lissamine green dyes and digital photos were graded by an independent masked observer. A grading scale was developed in order to describe the tarsal conjunctival staining. A significant decrease in the palpebral aperture height (blepharoptosis) was found after wearing of PMMA/9.5 and RGP/10.5 lenses. All three rigid contact lenses caused a significant increase in lid-wiper and tarsal staining after 8 hours of lens wear. There was also a significant diurnal increase in tarsal staining, even without contact lens wear. These findings highlight the need for better contact lens edge design to minimise the interactions between the lid and contact lens edge during blinking and more lubricious contact lens surfaces to reduce ocular surface micro-trauma due to friction and for. Tear film surface quality (TFSQ) was measured using a high-speed videokeratoscopy technique in Experiment 2. TFSQ was worse with all the lenses compared to baseline (PMMA/9.5, RGP/9.5, RGP/10.5, and SiHy/14) in the afternoon (after 8 hours) during normal and suppressed blinking conditions. The reduction in TFSQ was similar with all the contact lenses used, irrespective of their material and diameter. An unusual pattern of change in TFSQ in suppressed blinking conditions was also found. The TFSQ with contact lens was found to decrease until a certain time after which it improved to a value even better than the bare eye. This is likely to be due to the tear film drying completely over the surface of the contact lenses. The findings of this study also show that there is still a scope for improvement in contact lens materials in terms of better wettability and hydrophilicity in order to improve TFSQ and patient comfort. These experiments showed that a variety of changes can occur in the anterior eye as a result of the short-term use of a range of commonly used contact lens types. The greatest corneal changes occurred with lenses manufactured from older HEMA and PMMA lens materials, whereas modern SiHy and rigid gas permeable materials caused more subtle changes in corneal shape and thickness. All lenses caused signs of micro-trauma to the eyelid wiper and palpebral conjunctiva, although rigid lenses appeared to cause more significant changes. Tear film surface quality was also significantly reduced with all types of contact lenses. These short-term changes in the anterior eye are potential markers for further long term changes and the relative differences between lens types that we have identified provide an indication of areas of contact lens design and manufacture that warrant further development.
Diurnal variations in axial length, choroidal thickness, intraocular pressure, and ocular biometrics