975 resultados para Ocean currents


Relevância:

60.00% 60.00%

Publicador:

Resumo:

An analysis of observational data in the Barents Sea along a meridian at 33°30' E between 70°30' and 72°30' N has reported a negative correlation between El Niño/La Niña Southern Oscillation (ENSO) events and water temperature in the top 200 m: the temperature drops about 0.5 °C during warm ENSO events while during cold ENSO events the top 200 m layer of the Barents Sea is warmer. Results from 1 and 1/4-degree global NEMO models show a similar response for the whole Barents Sea. During the strong warm ENSO event in 1997–1998 an anomalous anticyclonic atmospheric circulation over the Barents Sea enhances heat loses, as well as substantially influencing the Barents Sea inflow from the North Atlantic, via changes in ocean currents. Under normal conditions along the Scandinavian peninsula there is a warm current entering the Barents Sea from the North Atlantic, however after the 1997–1998 event this current is weakened. During 1997–1998 the model annual mean temperature in the Barents Sea is decreased by about 0.8 °C, also resulting in a higher sea ice volume. In contrast during the cold ENSO events in 1999–2000 and 2007–2008, the model shows a lower sea ice volume, and higher annual mean temperatures in the upper layer of the Barents Sea of about 0.7 °C. An analysis of model data shows that the strength of the Atlantic inflow in the Barents Sea is the main cause of heat content variability, and is forced by changing pressure and winds in the North Atlantic. However, surface heat-exchange with the atmosphere provides the means by which the Barents sea heat budget relaxes to normal in the subsequent year after the ENSO events.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Rising sea level is perhaps the most severe consequence of climate warming, as much of the world’s population and infrastructure is located near current sea level (Lemke et al. 2007). A major rise of a metre or more would cause serious problems. Such possibilities have been suggested by Hansen and Sato (2011) who pointed out that sea level was several metres higher than now during the Holsteinian and Eemian interglacials (about 250,000 and 120,000 years ago, respectively), even though the global temperature was then only slightly higher than it is nowadays. It is consequently of the utmost importance to determine whether such a sea level rise could occur and, if so, how fast it might happen. Sea level undergoes considerable changes due to natural processes such as the wind, ocean currents and tidal motions. On longer time scales, the sea level is influenced by steric effects (sea water expansion caused by temperature and salinity changes of the ocean) and by eustatic effects caused by changes in ocean mass. Changes in the Earth’s cryosphere, such as the retreat or expansion of glaciers and land ice areas, have been the dominant cause of sea level change during the Earth’s recent history. During the glacial cycles of the last million years, the sea level varied by a large amount, of the order of 100 m. If the Earth’s cryosphere were to disappear completely, the sea level would rise by some 65 m. The scientific papers in the present volume address the different aspects of the Earth’s cryosphere and how the different changes in the cryosphere affect sea level change. It represents the outcome of the first workshop held within the new ISSI Earth Science Programme. The workshop took place from 22 to 26 March, 2010, in Bern, Switzerland, with the objective of providing an in-depth insight into the future of mountain glaciers and the large land ice areas of Antarctica and Greenland, which are exposed to natural and anthropogenic climate influences, and their effects on sea level change. The participants of the workshop are experts in different fields including meteorology, climatology, oceanography, glaciology and geodesy; they use advanced space-based observational studies and state-of-the-art numerical modelling.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The region of sea ice near the edge of the sea ice pack is known as the marginal ice zone (MIZ), and its dynamics are complicated by ocean wave interaction with the ice cover, strong gradients in the atmosphere and ocean and variations in sea ice rheology. This paper focuses on the role of sea ice rheology in determining the dynamics of the MIZ. Here, sea ice is treated as a granular material with a composite rheology describing collisional ice floe interaction and plastic interaction. The collisional component of sea ice rheology depends upon the granular temperature, a measure of the kinetic energy of flow fluctuations. A simplified model of the MIZ is introduced consisting of the along and across momentum balance of the sea ice and the balance equation of fluctuation kinetic energy. The steady solution of these equations is found to leading order using elementary methods. This reveals a concentrated region of rapid ice flow parallel to the ice edge, which is in accordance with field observations, and previously called the ice jet. Previous explanations of the ice jet relied upon the existence of ocean currents beneath the ice cover. We show that an ice jet results as a natural consequence of the granular nature of sea ice.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The seasonal sea level variations observed from tide gauges over 1900-2013 and gridded satellite altimeter product AVISO over 1993-2013 in the northwest Pacific have been explored. The seasonal cycle is able to explain 60-90% of monthly sea level variance in the marginal seas, while it explains less than 20% of variance in the eddy-rich regions. The maximum annual and semi-annual sea level cycles (30cm and 6cm) are observed in the north of the East China Sea and the west of the South China Sea respectively. AVISO was found to underestimate the annual amplitude by 25% compared to tide gauge estimates along the coasts of China and Russia. The forcing for the seasonal sea level cycle was identified. The atmospheric pressure and the steric height produce 8-12cm of the annual cycle in the middle continental shelf and in the Kuroshio Current regions separately. The removal of the two attributors from total sea level permits to identify the sea level residuals that still show significant seasonality in the marginal seas. Both nearby wind stress and surface currents can explain well the long-term variability of the seasonal sea level cycle in the marginal seas and the tropics because of their influence on the sea level residuals. Interestingly, the surface currents are a better descriptor in the areas where the ocean currents are known to be strong. Here, they explain 50-90% of inter-annual variability due to the strong links between the steric height and the large-scale ocean currents.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The El Niño/Southern Oscillation (ENSO) is the dominant climate phenomenon affecting extreme weather conditions worldwide. Its response to greenhouse warming has challenged scientists for decades, despite model agreement on projected changes in mean state. Recent studies have provided new insights into the elusive links between changes in ENSO and in the mean state of the Pacific climate. The projected slow-down in Walker circulation is expected to weaken equatorial Pacific Ocean currents, boosting the occurrences of eastward-propagating warm surface anomalies that characterize observed extreme El Niño events. Accelerated equatorial Pacific warming, particularly in the east, is expected to induce extreme rainfall in the eastern equatorial Pacific and extreme equatorward swings of the Pacific convergence zones, both of which are features of extreme El Niño. The frequency of extreme La Niña is also expected to increase in response to more extreme El Niños, an accelerated maritime continent warming and surface-intensified ocean warming. ENSO-related catastrophic weather events are thus likely to occur more frequently with unabated greenhouse-gas emissions. But model biases and recent observed strengthening of the Walker circulation highlight the need for further testing as new models, observations and insights become available.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A global database containing 3365 occurrences, 821 species and 251 genera of the Capitanian (Late Guadalupian, Permian) brachiopod faunas from 24 stations has been analyzed by cluster analysis using the Jaccard and Otsuka coefficients and the probabilistic index of similarity, nonmetric multidimensional scaling and minimum spanning tree. Two supergroups, three groups and six subgroups are revealed and interpreted as representing, respectively, two biotic realms (the Palaeoequatorial and Gondwanan Realms), two regions and six provinces. An additional realm (the Boreal Realm), based on the fauna from Spitsbergen, also appears recognizable although it also shows considerable similarities with southwestern North America and the northern margin of Gondwana as revealed by the statistical analysis. The Palaeoequatorial Realm can be further subdivided into the North America Region and the Asian Tethyan Region. The six biotic provinces are the Cathaysian Province in the Palaeotethys and Mesotethys, the Greenland-Svalbard Province in the Arctic region, the Austrazean Province in eastern Australia and New Zealand, the Grandian Province in western North America and the two transitional zones (the Himalayan Province in the southern temperate zone and the Sino–Mongolian–Japanese Province in the northern temperate zone). Polynomial regression analysis and rarefaction analysis indicate that the generic diversities of brachiopod faunas during the Capitanian peaked in the Palaeoequatorial Cathaysian Province and the two transitional zones (Himalayan Province and Sino–Mongolian–Japanese Province), but fell dramatically in the polar regions. The generic diversity of the Palaeoequatorial Grandian Province is apparently lower than in the two transitional zones of temperate palaeolatitudes, suggesting that the generic diversity of Capitanian brachiopod faunas does not exhibit a strict negative correlation with palaeolatitudes. This in turn would suggest that biogeographical determinants (such as geographical barriers, inhabitable area and ocean currents) other than latitude-related temperature control may also have played an important role in the dispersal of some brachiopods and the characterization of some local provinces and high diversities. The Capitanian global brachiopod palaeobiogeography is generally comparable with those in the Wuchiapingian and Changhsingian, but with some notable differences. These include: (1) that the Grandian Province of the Capitanian in western North America vanished after the end-Guadalupian regression, (2) that the western Tethyan Province of the Lopingian could not be distinguished in the Capitanian, and (3) that the Austrazean Province was larger in area than either in the Wuchiapingian or in the Changhsingian.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The paper considers the biogeography and palaeogeographic implications of the Permian marine bivalve faunas of Northeast Asia, with a focus on the dynamic relationships between biotic similarities and palaeogeographic distance through an interval of ca. 50 million years. A stage-by-stage time series analysis of the biotic similarities between two previously recognized biochores in Northeast Asia, the Kolyma–Omolon and Verkhoyan–Okhotsk provinces, has been carried out using both the Jaccard and Dice similarity indices based on the spatio-temporal distributions of 355 Permian marine bivalve species in Northeast Asia. The outcome of this analysis, combined with other empirical data and previously published tectonic, sedimentological and palaeontological information, suggests that (1) the bivalve faunas from these two provinces were distinctive from one another as two separate biochores throughout all but the earliest (Asselian) Permian stages and (2) the biotic similarities between the Verkhoyan–Okhotsk and Kolyma–Omolon provinces remained consistently low since Sakmarian, all falling well below the minimum threshold of the Jaccard index of 0.42 required for distinguishing marine biotic provinces. We interpret these below-threshold Jaccard biotic similarities as an indication of significant palaeogeographic separation between the Verkhoyan-Okhotsk and Kolyma–Omolon provinces, which is in turn considered to indicate rifting and seafloor spreading of the Omolon microcontinent and associated terranes and island arcs away from the North Asian craton, at least from the Sakmarian to the beginning of the Late Permian.
Palaeo-distance separation appears to be the primary and most significant biogeographic determinant in accounting for the differences in the spatial distribution of most Permian bivalve species in Northeast Asia. Several other variables also appear to have played a significant role, including regional climate conditions, ocean currents and merged island chains as geographic barriers. In particular, the relatively high biotic similarity between the Verkhoyan–Okhotsk and Kolyma–Omolon provinces during the Late Wuchiapingian and Changhsingian may have been related to the shallowing of the deep-water basins (Oimyakon, Ayan-Yuryakh, Balygychan and Sugoi basins) that had previously separated the two provinces and the flooding (submergence) of the Okhotsk–Taigonos volcanic arc system, thus allowing the invasion of lower latitude warm-water Palaeotethyan and even Gondwanan species into Northeast Asia.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The warming of coastal oceans due to climate change is increasing the overwinter survival of tropical fishes transported to temperate latitudes by ocean currents. However, the processes governing early post-arrival mortality are complex and can result in minimum threshold temperatures for overwinter survival, which are greater than those predicted based upon physiological temperature tolerances alone. This 3.5 mo laboratory study monitored the early performance of a tropical damselfish Abudefduf vaigiensis that occurs commonly during austral summer along the SE Australian coast, under nominal summer and winter water temperatures, and compares results with a co-occurring year-round resident of the same family, Parma microlepis. Survivorship, feeding rate, growth and burst swimming ability (as a measure of predator escape ability) were all reduced for the tropical species at winter water temperatures compared to those in summer, whereas the temperate species experienced no mortality and only feeding rate was reduced at colder temperatures. These results suggest that observed minimum threshold survival temperatures may be greater than predicted by physiology alone, due to lowered food intake combined with increased predation risk (a longer time at vulnerable sizes and reduced escape ability). Overwinter survival is a significant hurdle in pole-ward range expansions of tropical fishes, and a better understanding of its complex processes will allow for more accurate predictions of changes in biodiversity as coastal ocean temperatures continue to increase due to climate change.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Eocene ocean currents and prevailing winds correlate with over-water dispersals of terrestrial mammals from Africa to Madagascar. Since the Early Miocene (about 23 Ma), these currents flowed in the reverse direction, from the Indian Ocean towards Africa. The Comoro Islands are equidistant between Africa and Madagascar and support an endemic land vertebrate fauna that shares recent ancestry predominantly with Madagascar. We examined whether gene flow in two Miniopterus bat species endemic to the Comoros and Madagascar correlates with the direction of current winds, using uni- and bi-parentally inherited markers with different evolutionary rates. Coalescence-based analyses of mitochondrial matrilines support a Pleistocene (approximately 180 000 years ago) colonization event from Madagascar west to the Comoros (distance: 300 km) in the predicted direction. However, nuclear microsatellites show that more recent gene flow is restricted to a few individuals flying against the wind, from Grande Comore to Anjouan (distance: 80 km).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

For many species, there is broad-scale dispersal of juvenile stages and/or long-distance migration of individuals and hence the processes that drive these various wide-ranging movements have important life-history consequences. Sea turtles are one of these paradigmatic long-distance travellers, with hatchlings thought to be dispersed by ocean currents and adults often shuttling between distant breeding and foraging grounds. Here, we use multi-disciplinary oceanographic, atmospheric and genetic mixed stock analyses to show that juvenile turtles are encountered ‘downstream’ at sites predicted by currents. However, in some cases, unusual occurrences of juveniles are more readily explained by storm events and we show that juvenile turtles may be displaced thousands of kilometres from their expected dispersal based on prevailing ocean currents. As such, storms may be a route by which unexpected areas are encountered by juveniles which may in turn shape adult migrations. Increased stormy weather predicted under climate change scenarios suggests an increasing role of storms in dispersal of sea turtles and other marine groups with life-stages near the ocean surface.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sea turtles are known to perform long-distance, oceanic migrations between disparate feeding areas and breeding sites, some of them located on isolated oceanic islands. These migrations demonstrate impressive navigational abilities, but the sensory mechanisms used are still largely unknown. Green turtles breeding at Ascension Island perform long oceanic migrations (>2200 km) between foraging areas along the Brazilian coast and the isolated island. By performing displacement experiments of female green turtles tracked by satellite telemetry in the waters around Ascension Island we investigated which strategies most probably are used by the turtles in locating the island. In the present paper we analysed the search trajectories in relation to alternative navigation strategies including the use of global geomagnetic cues, ocean currents, celestial cues and wind. The results suggest that the turtles did not use chemical information transported with ocean currents. Neither did the results indicate that the turtles use true bi-coordinate geomagnetic navigation nor did they use indirect navigation with respect to any of the available magnetic gradients (total field intensity, horizontal field intensity, vertical field intensity, inclination and declination) or celestial cues. The female green turtles successfully locating Ascension Island seemed to use a combination of searching followed by beaconing, since they searched for sensory contact with the island until they reached positions NW and N of the Island and from there presumably used cues transported by wind to locate the island during the final stages of the search.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Whilst a range of animals have been shown to respond behaviourally to components of the Earth’s magnetic field, evidence of the value of this sensory perception for small animals advected by strong flows (wind/ocean currents) is equivocal. We added geomagnetic directional swimming behaviour for North Atlantic loggerhead turtle hatchlings (Caretta caretta) into a high-resolution (1/4°) global general circulation ocean model to simulate 2,925-year-long hatchling trajectories comprising 355,875 locations. A little directional swimming (1–3 h per day) had a major impact on trajectories; simulated hatchlings travelled further south into warmer water. As a result, thermal elevation of hatchling metabolic rates was estimated to be between 63.3 and 114.5% after 220 days. We show that even small animals in strong flows can benefit from geomagnetic orientation and thus the potential implications of directional swimming for other taxa may be broad.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Long distance migration occurs in a wide variety of taxa including birds, insects, fishes, mammals and reptiles. Here, we provide evidence for a new paradigm for the determinants of migration destination. As adults, sea turtles show fidelity to their natal nesting areas and then at the end of the breeding season may migrate to distant foraging sites. For a major rookery in the Mediterranean, we simulated hatchling drift by releasing 288 000 numerical particles in an area close to the nesting beaches. We show that the pattern of adult dispersion from the breeding area reflects the extent of passive dispersion that would be experienced by hatchlings. Hence, the prevailing oceanography around nesting areas may be crucial to the selection of foraging sites used by adult sea turtles. This environmental forcing may allow the rapid evolution of new migration destinations if ocean currents alter with climate change.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

One of the most obvious and expected impacts of climate change is a shift in the distributional range of organisms, which could have considerable ecological and economic consequences. Australian waters are hotspots for climate-induced environmental changes; here, we review these potential changes and their apparent and potential implications for freshwater, estuarine and marine fish. Our meta-analysis detected 300 papers globally on 'fish' and 'range shifts', with ∼7% being from Australia. Of the Australian papers, only one study exhibited definitive evidence of climate-induced range shifts, with most studies focussing instead on future predictions. There was little consensus in the literature regarding the definition of 'range', largely because of populations having distributions that fluctuate regularly. For example, many marine populations have broad dispersal of offspring (causing vagrancy). Similarly, in freshwater and estuarine systems, regular environmental changes (e.g. seasonal, ENSO cycles not related to climate change) cause expansion and contraction of populations, which confounds efforts to detect range 'shifts'. We found that increases in water temperature, reduced freshwater flows and changes in ocean currents are likely to be the key drivers of climate-induced range shifts in Australian fishes. Although large-scale frequent and rigorous direct surveys of fishes across their entire distributional ranges, especially at range edges, will be essential to detect range shifts of fishes in response to climate change, we suggest careful co-opting of fisheries, museum and other regional databases as a potential, but imperfect alternative. © 2011 CSIRO Open Access.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The movements of some long-distance migrants are driven by innate compass headings that they follow on their first migrations (e.g., some birds and insects), while the movements of other first-time migrants are learned by following more experienced conspecifics (e.g., baleen whales). However, the overall roles of innate, learned, and social behaviors in driving migration goals in many taxa are poorly understood. To look for evidence of whether migration routes are innate or learned for sea turtles, here for 42 sites around the world we compare the migration routes of >400 satellite-tracked adults of multiple species of sea turtle with ∼45 000 Lagrangian hatchling turtle drift scenarios. In so doing, we show that the migration routes of adult turtles are strongly related to hatchling drift patterns, implying that adult migration goals are learned through their past experiences dispersing with ocean currents. The diverse migration destinations of adults consistently reflected the diversity in sites they would have encountered as drifting hatchlings. Our findings reveal how a simple mechanism, juvenile passive drift, can explain the ontogeny of some of the longest migrations in the animal kingdom and ensure that adults find suitable foraging sites.