963 resultados para Objective functions


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Optimal state estimation is a method that requires minimising a weighted, nonlinear, least-squares objective function in order to obtain the best estimate of the current state of a dynamical system. Often the minimisation is non-trivial due to the large scale of the problem, the relative sparsity of the observations and the nonlinearity of the objective function. To simplify the problem the solution is often found via a sequence of linearised objective functions. The condition number of the Hessian of the linearised problem is an important indicator of the convergence rate of the minimisation and the expected accuracy of the solution. In the standard formulation the convergence is slow, indicating an ill-conditioned objective function. A transformation to different variables is often used to ameliorate the conditioning of the Hessian by changing, or preconditioning, the Hessian. There is only sparse information in the literature for describing the causes of ill-conditioning of the optimal state estimation problem and explaining the effect of preconditioning on the condition number. This paper derives descriptive theoretical bounds on the condition number of both the unpreconditioned and preconditioned system in order to better understand the conditioning of the problem. We use these bounds to explain why the standard objective function is often ill-conditioned and why a standard preconditioning reduces the condition number. We also use the bounds on the preconditioned Hessian to understand the main factors that affect the conditioning of the system. We illustrate the results with simple numerical experiments.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Most of water distribution systems (WDS) need rehabilitation due to aging infrastructure leading to decreasing capacity, increasing leakage and consequently low performance of the WDS. However an appropriate strategy including location and time of pipeline rehabilitation in a WDS with respect to a limited budget is the main challenge which has been addressed frequently by researchers and practitioners. On the other hand, selection of appropriate rehabilitation technique and material types is another main issue which has yet to address properly. The latter can affect the environmental impacts of a rehabilitation strategy meeting the challenges of global warming mitigation and consequent climate change. This paper presents a multi-objective optimization model for rehabilitation strategy in WDS addressing the abovementioned criteria mainly focused on greenhouse gas (GHG) emissions either directly from fossil fuel and electricity or indirectly from embodied energy of materials. Thus, the objective functions are to minimise: (1) the total cost of rehabilitation including capital and operational costs; (2) the leakage amount; (3) GHG emissions. The Pareto optimal front containing optimal solutions is determined using Non-dominated Sorting Genetic Algorithm NSGA-II. Decision variables in this optimisation problem are classified into a number of groups as: (1) percentage proportion of each rehabilitation technique each year; (2) material types of new pipeline for rehabilitation each year. Rehabilitation techniques used here includes replacement, rehabilitation and lining, cleaning, pipe duplication. The developed model is demonstrated through its application to a Mahalat WDS located in central part of Iran. The rehabilitation strategy is analysed for a 40 year planning horizon. A number of conventional techniques for selecting pipes for rehabilitation are analysed in this study. The results show that the optimal rehabilitation strategy considering GHG emissions is able to successfully save the total expenses, efficiently decrease the leakage amount from the WDS whilst meeting environmental criteria.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The objective of this dissertation is to re-examine classical issues in corporate finance, applying a new analytical tool. The single-crossing property, also called Spence-irrlees condition, is not required in the models developed here. This property has been a standard assumption in adverse selection and signaling models developed so far. The classical papers by Guesnerie and Laffont (1984) and Riley (1979) assume it. In the simplest case, for a consumer with a privately known taste, the single-crossing property states that the marginal utility of a good is monotone with respect to the taste. This assumption has an important consequence to the result of the model: the relationship between the private parameter and the quantity of the good assigned to the agent is monotone. While single crossing is a reasonable property for the utility of an ordinary consumer, this property is frequently absent in the objective function of the agents for more elaborate models. The lack of a characterization for the non-single crossing context has hindered the exploration of models that generate objective functions without this property. The first work that characterizes the optimal contract without the single-crossing property is Araújo and Moreira (2001a) and, for the competitive case, Araújo and Moreira (2001b). The main implication is that a partial separation of types may be observed. Two sets of disconnected types of agents may choose the same contract, in adverse selection problems, or signal with the same levei of signal, in signaling models.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The paper analysis a general equilibrium model with two periods, several households and a government that has to finance some expenditures in the first period. Households may have some private information either about their type (adverse selection) or about some action levei chosen in the first period that affects the probability of certain states of nature in the second period (moral hazard). Trade of financiai assets are intermediated by a finite collection of banks. Banks objective functions are determined in equilibrium by shareholders. Due to private information it may be optimal for the banks to introduce constraints in the set of available portfolios for each household as wellas household specific asset prices. In particular, households may face distinct interest rates for holding the risk-free asset. The government finances its expenditures either by taxing households in the first period or by issuing bonds in the first period and taxing households in the second period. Taxes may be state-dependent. Suppose government policies are neutml: i) government policies do not affect the distribution of wealth across households; and ii) if the government decides to tax a household in the second period there is a portfolio available for the banks that generates the Mme payoff in each state of nature as the household taxes. Tben, Ricardian equivalence holds if and only if an appropriate boundary condition is satisfied. Moreover, at every free-entry equilibrium the boundary condition is satisfied and thus Ricardian equivalence holds. These results do not require any particular assumption on the banks' objective function. In particular, we do not assume banks to be risk neutral.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper empirically examines the alternative posed by Richardson (1993) to the traditional view that trade integration may exacerbate inefficiencies through trade diversion. Richardson’s hypothesis boldly predicts that trade diversion may actually cause tariffs to decline! The hypothesis is fundamentally attributable to the presence of a political component in the governments’ objective functions. A cross-sectionally rich data-set on trade and tariffs from the Mercosur-pact countries, primarily Argentina, is used. The evidence yields surprising conclusions about the validity of the political economy construct in models of trade integration.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We consider risk-averse convex stochastic programs expressed in terms of extended polyhedral risk measures. We derive computable con dence intervals on the optimal value of such stochastic programs using the Robust Stochastic Approximation and the Stochastic Mirror Descent (SMD) algorithms. When the objective functions are uniformly convex, we also propose a multistep extension of the Stochastic Mirror Descent algorithm and obtain con dence intervals on both the optimal values and optimal solutions. Numerical simulations show that our con dence intervals are much less conservative and are quicker to compute than previously obtained con dence intervals for SMD and that the multistep Stochastic Mirror Descent algorithm can obtain a good approximate solution much quicker than its nonmultistep counterpart. Our con dence intervals are also more reliable than asymptotic con dence intervals when the sample size is not much larger than the problem size.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Continuous-time neural networks for solving convex nonlinear unconstrained;programming problems without using gradient information of the objective function are proposed and analyzed. Thus, the proposed networks are nonderivative optimizers. First, networks for optimizing objective functions of one variable are discussed. Then, an existing one-dimensional optimizer is analyzed, and a new line search optimizer is proposed. It is shown that the proposed optimizer network is robust in the sense that it has disturbance rejection property. The network can be implemented easily in hardware using standard circuit elements. The one-dimensional net is used as a building block in multidimensional networks for optimizing objective functions of several variables. The multidimensional nets implement a continuous version of the coordinate descent method.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present a bilevel model for transmission expansion planning within a market environment, where producers and consumers trade freely electric energy through a pool. The target of the transmission planner, modeled through the upper-level problem, is to minimize network investment cost while facilitating energy trading. This upper-level problem is constrained by a collection of lower-level market clearing problems representing pool trading, and whose individual objective functions correspond to social welfare. Using the duality theory the proposed bilevel model is recast as a mixed-integer linear programming problem, which is solvable using branch-and-cut solvers. Detailed results from an illustrative example and a case study are presented and discussed. Finally, some relevant conclusions are drawn.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Analog networks for solving convex nonlinear unconstrained programming problems without using gradient information of the objective function are proposed. The one-dimensional net can be used as a building block in multi-dimensional networks for optimizing objective functions of several variables.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work the multiarea optimal power flow (OPF) problem is decoupled into areas creating a set of regional OPF subproblems. The objective is to solve the optimal dispatch of active and reactive power for a determined area, without interfering in the neighboring areas. The regional OPF subproblems are modeled as a large-scale nonlinear constrained optimization problem, with both continuous and discrete variables. Constraints violated are handled as objective functions of the problem. In this way the original problem is converted to a multiobjective optimization problem, and a specifically-designed multiobjective evolutionary algorithm is proposed for solving the regional OPF subproblems. The proposed approach has been examined and tested on the RTS-96 and IEEE 354-bus test systems. Good quality suboptimal solutions were obtained, proving the effectiveness and robustness of the proposed approach. ©2009 IEEE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper a heuristic technique for solving simultaneous short-term transmission network expansion and reactive power planning problem (TEPRPP) via an AC model is presented. A constructive heuristic algorithm (CHA) aimed to obtaining a significant quality solution for such problem is employed. An interior point method (IPM) is applied to solve TEPRPP as a nonlinear programming (NLP) during the solution steps of the algorithm. For each proposed network topology, an indicator is deployed to identify the weak buses for reactive power sources placement. The objective function of NLP includes the costs of new transmission lines, real power losses as well as reactive power sources. By allocating reactive power sources at load buses, the circuit capacity may increase while the cost of new lines can be decreased. The proposed methodology is tested on Garver's system and the obtained results shows its capability and the viability of using AC model for solving such non-convex optimization problem. © 2011 IEEE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents the generation of optimal trajectories by genetic algorithms (GA) for a planar robotic manipulator. The implemented GA considers a multi-objective function that minimizes the end-effector positioning error together with the joints angular displacement and it solves the inverse kinematics problem for the trajectory. Computer simulations results are presented to illustrate this implementation and show the efficiency of the used methodology producing soft trajectories with low computing cost. © 2011 Springer-Verlag Berlin Heidelberg.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents a mixed-integer linear programming model to solve the conductor size selection and reconductoring problem in radial distribution systems. In the proposed model, the steady-state operation of the radial distribution system is modeled through linear expressions. The use of a mixed-integer linear model guarantees convergence to optimality using existing optimization software. The proposed model and a heuristic are used to obtain the Pareto front of the conductor size selection and reconductoring problem considering two different objective functions. The results of one test system and two real distribution systems are presented in order to show the accuracy as well as the efficiency of the proposed solution technique. © 1969-2012 IEEE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents a mixed-integer linear programming approach to solving the problem of optimal type, size and allocation of distributed generators (DGs) in radial distribution systems. In the proposed formulation, (a) the steady-state operation of the radial distribution system, considering different load levels, is modeled through linear expressions; (b) different types of DGs are represented by their capability curves; (c) the short-circuit current capacity of the circuits is modeled through linear expressions; and (d) different topologies of the radial distribution system are considered. The objective function minimizes the annualized investment and operation costs. The use of a mixed-integer linear formulation guarantees convergence to optimality using existing optimization software. The results of one test system are presented in order to show the accuracy as well as the efficiency of the proposed solution technique.© 2012 Elsevier B.V. All rights reserved.