923 resultados para Object Recognition
Resumo:
Cognitive dysfunction is found in patients with brain tumors and there is a need to determine whether it can be replicated in an experimental model. In the present study, the object recognition (OR) paradigm was used to investigate cognitive performance in nude mice, which represent one of the most important animal models available to study human tumors in vivo. Mice with orthotopic xenografts of the human U87MG glioblastoma cell line were trained at 9, 14, and 18days (D9, D14, and D18, respectively) after implantation of 5×10(5) cells. At D9, the mice showed normal behavior when tested 90min or 24h after training and compared to control nude mice. Animals at D14 were still able to discriminate between familiar and novel objects, but exhibited a lower performance than animals at D9. Total impairment in the OR memory was observed when animals were evaluated on D18. These alterations were detected earlier than any other clinical symptoms, which were observed only 22-24days after tumor implantation. There was a significant correlation between the discrimination index (d2) and time after tumor implantation as well as between d2 and tumor volume. These data indicate that the OR task is a robust test to identify early behavior alterations caused by glioblastoma in nude mice. In addition, these results suggest that OR task can be a reliable tool to test the efficacy of new therapies against these tumors.
Resumo:
In recent years, Deep Learning techniques have shown to perform well on a large variety of problems both in Computer Vision and Natural Language Processing, reaching and often surpassing the state of the art on many tasks. The rise of deep learning is also revolutionizing the entire field of Machine Learning and Pattern Recognition pushing forward the concepts of automatic feature extraction and unsupervised learning in general. However, despite the strong success both in science and business, deep learning has its own limitations. It is often questioned if such techniques are only some kind of brute-force statistical approaches and if they can only work in the context of High Performance Computing with tons of data. Another important question is whether they are really biologically inspired, as claimed in certain cases, and if they can scale well in terms of "intelligence". The dissertation is focused on trying to answer these key questions in the context of Computer Vision and, in particular, Object Recognition, a task that has been heavily revolutionized by recent advances in the field. Practically speaking, these answers are based on an exhaustive comparison between two, very different, deep learning techniques on the aforementioned task: Convolutional Neural Network (CNN) and Hierarchical Temporal memory (HTM). They stand for two different approaches and points of view within the big hat of deep learning and are the best choices to understand and point out strengths and weaknesses of each of them. CNN is considered one of the most classic and powerful supervised methods used today in machine learning and pattern recognition, especially in object recognition. CNNs are well received and accepted by the scientific community and are already deployed in large corporation like Google and Facebook for solving face recognition and image auto-tagging problems. HTM, on the other hand, is known as a new emerging paradigm and a new meanly-unsupervised method, that is more biologically inspired. It tries to gain more insights from the computational neuroscience community in order to incorporate concepts like time, context and attention during the learning process which are typical of the human brain. In the end, the thesis is supposed to prove that in certain cases, with a lower quantity of data, HTM can outperform CNN.
Resumo:
In this project, we propose the implementation of a 3D object recognition system which will be optimized to operate under demanding time constraints. The system must be robust so that objects can be recognized properly in poor light conditions and cluttered scenes with significant levels of occlusion. An important requirement must be met: the system must exhibit a reasonable performance running on a low power consumption mobile GPU computing platform (NVIDIA Jetson TK1) so that it can be integrated in mobile robotics systems, ambient intelligence or ambient assisted living applications. The acquisition system is based on the use of color and depth (RGB-D) data streams provided by low-cost 3D sensors like Microsoft Kinect or PrimeSense Carmine. The range of algorithms and applications to be implemented and integrated will be quite broad, ranging from the acquisition, outlier removal or filtering of the input data and the segmentation or characterization of regions of interest in the scene to the very object recognition and pose estimation. Furthermore, in order to validate the proposed system, we will create a 3D object dataset. It will be composed by a set of 3D models, reconstructed from common household objects, as well as a handful of test scenes in which those objects appear. The scenes will be characterized by different levels of occlusion, diverse distances from the elements to the sensor and variations on the pose of the target objects. The creation of this dataset implies the additional development of 3D data acquisition and 3D object reconstruction applications. The resulting system has many possible applications, ranging from mobile robot navigation and semantic scene labeling to human-computer interaction (HCI) systems based on visual information.
Resumo:
Spatial generalization skills in school children aged 8-16 were studied with regard to unfamiliar objects that had been previously learned in a cross-modal priming and learning paradigm. We observed a developmental dissociation with younger children recognizing objects only from previously learnt perspectives whereas older children generalized acquired object knowledge to new viewpoints as well. Haptic and - to a lesser extent - visual priming improved spatial generalization in all but the youngest children. The data supports the idea of dissociable, view-dependent and view-invariant object representations with different developmental trajectories that are subject to modulatory effects of priming. Late-developing areas in the parietal or the prefrontal cortex may account for the retarded onset of view-invariant object recognition. © 2006 Elsevier B.V. All rights reserved.
Resumo:
It has been suggested that the deleterious effect of contrast reversal on visual recognition is unique to faces, not objects. Here we show from priming, supervised category learning, and generalization that there is no such thing as general invariance of recognition of non-face objects against contrast reversal and, likewise, changes in direction of illumination. However, when recognition varies with rendering conditions, invariance may be restored, and effects of continuous learning may be reduced, by providing prior object knowledge from active sensation. Our findings suggest that the degree of contrast invariance achieved reflects functional characteristics of object representations learned in a task-dependent fashion.
Resumo:
Three experiments assessed the development of children's part and configural (part-relational) processing in object recognition during adolescence. In total, 312 school children aged 7-16 years and 80 adults were tested in 3-alternative forced choice (3-AFC) tasks. They judged the correct appearance of upright and inverted presented familiar animals, artifacts, and newly learned multipart objects, which had been manipulated either in terms of individual parts or part relations. Manipulation of part relations was constrained to either metric (animals, artifacts, and multipart objects) or categorical (multipart objects only) changes. For animals and artifacts, even the youngest children were close to adult levels for the correct recognition of an individual part change. By contrast, it was not until 11-12 years of age that they achieved similar levels of performance with regard to altered metric part relations. For the newly learned multipart objects, performance was equivalent throughout the tested age range for upright presented stimuli in the case of categorical part-specific and part-relational changes. In the case of metric manipulations, the results confirmed the data pattern observed for animals and artifacts. Together, the results provide converging evidence, with studies of face recognition, for a surprisingly late consolidation of configural-metric relative to part-based object recognition.
Resumo:
Background. Previous research has shown that object recognition may develop well into late childhood and adolescence. The present study extends that research and reveals novel differences in holistic and analytic recognition performance in 7-12 year olds compared to that seen in adults. We interpret our data within a hybrid model of object recognition that proposes two parallel routes for recognition (analytic vs. holistic) modulated by attention. Methodology / Principal Findings. Using a repetition-priming paradigm, we found in Experiment 1 that children showed no holistic priming, but only analytic priming. Given that holistic priming might be thought to be more ‘primitive’, we confirmed in Experiment 2 that our surprising finding was not because children’s analytic recognition was merely a result of name repetition. Conclusions / Significance. Our results suggest a developmental primacy of analytic object recognition. By contrast, holistic object recognition skills appear to emerge with a much more protracted trajectory extending into late adolescence.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
There is evidence for the late development in humans of configural face and animal recognition. We show that the recognition of artificial three-dimensional (3D) objects from part configurations develops similarly late. We also demonstrate that the cross-modal integration of object information reinforces the development of configural recognition more than the intra-modal integration does. Multimodal object representations in the brain may therefore play a role in configural object recognition. © 2003 Elsevier B.V. All rights reserved.
Resumo:
Four experiments with unfamiliar objects examined the remarkably late consolidation of part-relational relative to part-based object recognition (Jüttner, Wakui, Petters, Kaur, & Davidoff, 2013). Our results indicate a particularly protracted developmental trajectory for the processing of metric part relations. Schoolchildren aged 7 to 14 years and adults were tested in 3-Alternative-Forced-Choice tasks to judge the correct appearance of upright and inverted newly learned multipart objects that had been manipulated in terms of individual parts or part relations. Experiment 1 showed that even the youngest tested children were close to adult levels of performance for recognizing categorical changes of individual parts and relative part position. By contrast, Experiment 2 demonstrated that performance for detecting metric changes of relative part position was distinctly reduced in young children compared with recognizing metric changes of individual parts, and did not approach the latter until 11 to 12 years. A similar developmental dissociation was observed in Experiment 3, which contrasted the detection of metric relative-size changes and metric part changes. Experiment 4 showed that manipulations of metric size that were perceived as part (rather than part-relational) changes eliminated this dissociation. Implications for theories of object recognition and similarities to the development of face perception are discussed. © 2014 American Psychological Association.
Resumo:
Recent experimental studies have shown that development towards adult performance levels in configural processing in object recognition is delayed through middle childhood. Whilst partchanges to animal and artefact stimuli are processed with similar to adult levels of accuracy from 7 years of age, relative size changes to stimuli result in a significant decrease in relative performance for participants aged between 7 and 10. Two sets of computational experiments were run using the JIM3 artificial neural network with adult and 'immature' versions to simulate these results. One set progressively decreased the number of neurons involved in the representation of view-independent metric relations within multi-geon objects. A second set of computational experiments involved decreasing the number of neurons that represent view-dependent (nonrelational) object attributes in JIM3's Surface Map. The simulation results which show the best qualitative match to empirical data occurred when artificial neurons representing metric-precision relations were entirely eliminated. These results therefore provide further evidence for the late development of relational processing in object recognition and suggest that children in middle childhood may recognise objects without forming structural description representations.
Resumo:
Many Object recognition techniques perform some flavour of point pattern matching between a model and a scene. Such points are usually selected through a feature detection algorithm that is robust to a class of image transformations and a suitable descriptor is computed over them in order to get a reliable matching. Moreover, some approaches take an additional step by casting the correspondence problem into a matching between graphs defined over feature points. The motivation is that the relational model would add more discriminative power, however the overall effectiveness strongly depends on the ability to build a graph that is stable with respect to both changes in the object appearance and spatial distribution of interest points. In fact, widely used graph-based representations, have shown to suffer some limitations, especially with respect to changes in the Euclidean organization of the feature points. In this paper we introduce a technique to build relational structures over corner points that does not depend on the spatial distribution of the features. © 2012 ICPR Org Committee.
Resumo:
Previous research (e.g., Jüttner et al, 2013, Developmental Psychology, 49, 161-176) has shown that object recognition may develop well into late childhood and adolescence. The present study extends that research and reveals novel di erences in holistic and analytic recognition performance in 7-11 year olds compared to that seen in adults. We interpret our data within Hummel’s hybrid model of object recognition (Hummel, 2001, Visual Cognition, 8, 489-517) that proposes two parallel routes for recognition (analytic vs. holistic) modulated by attention. Using a repetition-priming paradigm, we found in Experiment 1 that children showed no holistic priming, but only analytic priming. Given that holistic priming might be thought to be more ‘primitive’, we confirmed in Experiment 2 that our surprising finding was not because children’s analytic recognition was merely a result of name repetition. Our results suggest a developmental primacy of analytic object recognition. By contrast, holistic object recognition skills appear to emerge with a much more protracted trajectory extending into late adolescence
Resumo:
The suitable operation of mobile robots when providing Ambient Assisted Living (AAL) services calls for robust object recognition capabilities. Probabilistic Graphical Models (PGMs) have become the de-facto choice in recognition systems aiming to e ciently exploit contextual relations among objects, also dealing with the uncertainty inherent to the robot workspace. However, these models can perform in an inco herent way when operating in a long-term fashion out of the laboratory, e.g. while recognizing objects in peculiar con gurations or belonging to new types. In this work we propose a recognition system that resorts to PGMs and common-sense knowledge, represented in the form of an ontology, to detect those inconsistencies and learn from them. The utilization of the ontology carries additional advantages, e.g. the possibility to verbalize the robot's knowledge. A primary demonstration of the system capabilities has been carried out with very promising results.