980 resultados para Object Memory
Resumo:
Many prefrontal (PF) neurons convey information about both an object’s identity (what) and its location (where). To explore how they represent conjunctions of what and where, we explored the receptive fields of their mnemonic activity (i.e., their “memory fields”) by requiring monkeys to remember both an object and its location at many positions throughout a wide portion of central vision. Many PF neurons conveyed object information and had highly localized memory fields that emphasized the contralateral, but not necessarily foveal, visual field. These results indicate that PF neurons can simultaneously convey precise location and object information and thus may play a role in constructing a unified representation of a visual scene.
Resumo:
Working memory is the process of actively maintaining a representation of information for a brief period of time so that it is available for use. In monkeys, visual working memory involves the concerted activity of a distributed neural system, including posterior areas in visual cortex and anterior areas in prefrontal cortex. Within visual cortex, ventral stream areas are selectively involved in object vision, whereas dorsal stream areas are selectively involved in spatial vision. This domain specificity appears to extend forward into prefrontal cortex, with ventrolateral areas involved mainly in working memory for objects and dorsolateral areas involved mainly in working memory for spatial locations. The organization of this distributed neural system for working memory in monkeys appears to be conserved in humans, though some differences between the two species exist. In humans, as compared with monkeys, areas specialized for object vision in the ventral stream have a more inferior location in temporal cortex, whereas areas specialized for spatial vision in the dorsal stream have a more superior location in parietal cortex. Displacement of both sets of visual areas away from the posterior perisylvian cortex may be related to the emergence of language over the course of brain evolution. Whereas areas specialized for object working memory in humans and monkeys are similarly located in ventrolateral prefrontal cortex, those specialized for spatial working memory occupy a more superior and posterior location within dorsal prefrontal cortex in humans than in monkeys. As in posterior cortex, this displacement in frontal cortex also may be related to the emergence of new areas to serve distinctively human cognitive abilities.
Resumo:
We tested amnesic patients, patients with frontal lobe lesions, and control subjects with the deferred imitation task, a nonverbal test used to demonstrate memory abilities in human infants. On day 1, subjects were given sets of objects to obtain a baseline measure of their spontaneous performance of target actions. Then different event sequences were modeled with the object sets. On day 2, the objects were given to the subjects again, first without any instructions to imitate the sequences, and then with explicit instructions to imitate the actions exactly as they had been modeled. Control subjects and frontal lobe patients reproduced the events under both uninstructed and instructed conditions. In contrast, performance by the amnesic patients did not significantly differ from that of a second control group who had the same opportunities to handle the objects but were not shown the modeled actions. These findings suggest that deferred imitation is dependent on the brain structures essential for declarative memory that are damaged in amnesia, and they support the view that infants who imitate actions after long delays have an early capacity for long-term declarative memory.
Resumo:
This combined PET and ERP study was designed to identify the brain regions activated in switching and divided attention between different features of a single object using matched sensory stimuli and motor response. The ERP data have previously been reported in this journal [64]. We now present the corresponding PET data. We identified partially overlapping neural networks with paradigms requiring the switching or dividing of attention between the elements of complex visual stimuli. Regions of activation were found in the prefrontal and temporal cortices and cerebellum. Each task resulted in different prefrontal cortical regions of activation lending support to the functional subspecialisation of the prefrontal and temporal cortices being based on the cognitive operations required rather than the stimuli themselves. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
Increasing evidence suggests a link between attention, working memory, serotonin (5-HT), and prefrontal cortex activity. In an attempt to tease out the relationship between these elements, this study tested the effects of the hallucinogenic mixed 5-HT1A/2A receptor agonist psilocybin alone and after pretreatment with the 5-HT2A antagonist ketanserin. Eight healthy human volunteers were rested on a multiple-object tracking task and spatial working memory task under the four conditions: placebo, psilocybin (215 mu g/kg), ketanserin (50 mg), and psilocybin and ketanserin. Psilocybin significantly reduced attentional tracking ability, but had no significant effect on spatial working memory, suggesting a functional dissociation between the two tasks. Pretreatment with ketanserin did not attenuate the effect of psilocybin on attentional performance, suggestinga primary involvement of the 5-HT1A receptor in the observed defecit. Based on physiological and pharmacological data,we speculate that this impaired attentional performance may reflect a reduced ability to suppress or ignore distracting stimuli rather than reduced attentional capacity. The clinical relevance of these results is also discussed.
Resumo:
To investigate the stability of trace reactivation in healthy older adults, 22 older volunteers with no significant neurological history participated in a cross-modal priming task. Whilst both object relative center embedded (ORC) and object relative right branching (ORR) sentences is-ere employed, working memory load was reduced by limiting the number of wordy separating the antecedent front the gap for both sentence types. Analysis of the results did not reveal any significant trace reactivation for the ORC or ORR sentences. The results did reveal, however, a positive correlation between age and semantic printing at the pre-gap position and a negative correlation between age and semantic printing at the gap position for ORC sentences. In contrast, there was no correlation between age and priming effects for the ORR sentences. These results indicated that trace reactivation may be sensitive to a variety of age related factors, including lexical activation and working memory. The implications of these results for sentence processing in the older population arc discussed.
Resumo:
One of the key challenges that organizations face when trying to integrate knowledge across different functions is the need to overcome knowledge boundaries between team members. In cross-functional teams, these boundaries, associated with different knowledge backgrounds of people from various disciplines, create communication problems, necessitating team members to engage in complex cognitive processes when integrating knowledge toward a joint outcome. This research investigates the impact of syntactic, semantic, and pragmatic knowledge boundaries on a team’s ability to develop a transactive memory system (TMS)—a collective memory system for knowledge coordination in groups. Results from our survey show that syntactic and pragmatic knowledge boundaries negatively affect TMS development. These findings extend TMS theory beyond the information-processing view, which treats knowledge as an object that can be stored and retrieved, to the interpretive and practice-based views of knowledge, which recognize that knowledge (in particular specialized knowledge) is localized, situated, and embedded in practice.
Resumo:
Neuroimaging studies of episodic memory, or memory of events from our personal past, have predominantly focused their attention on medial temporal lobe (MTL). There is growing acknowledgement however, from the cognitive neuroscience of memory literature, that regions outside the MTL can support episodic memory processes. The medial prefrontal cortex is one such region garnering increasing interest from researchers. Using behavioral and functional magnetic resonance imaging measures, over two studies, this thesis provides evidence of a mnemonic role of the medial PFC. In the first study, participants were scanned while judging the extent to which they agreed or disagreed with the sociopolitical views of unfamiliar individuals. Behavioral tests of associative recognition revealed that participants remembered with high confidence viewpoints previously linked with judgments of strong agreement/disagreement. Neurally, the medial PFC mediated the interaction between high-confidence associative recognition memory and beliefs associated with strong agree/disagree judgments. In an effort to generalize this finding to well-established associative information, in the second study, we investigated associative recognition memory for real-world concepts. Object-scene pairs congruent or incongruent with a preexisting schema were presented to participants in a cued-recall paradigm. Behavioral tests of conceptual and perceptual recognition revealed memory enhancements arising from strong resonance between presented pairs and preexisting schemas. Neurally, the medial PFC tracked increases in visual recall of schema-congruent pairs whereas the MTL tracked increases in visual recall of schema-incongruent pairs. Additionally, ventral areas of the medial PFC tracked conceptual components of visual recall specifically for schema-congruent pairs. These findings are consistent with a recent theoretical proposal of medial PFC contributions to memory for schema-related content. Collectively, these studies provide evidence of a role for the medial PFC in associative recognition memory persisting for associative information deployed in our daily social interactions and for those associations formed over multiple learning episodes. Additionally, this set of findings advance our understanding of the cognitive contributions of the medial PFC beyond its canonical role in processes underlying social cognition.
Resumo:
Two novel studies examining the capacity and characteristics of working memory for object weights, experienced through lifting, were completed. Both studies employed visually identical objects of varying weight and focused on memories linking object locations and weights. Whereas numerous studies have examined the capacity of visual working memory, the capacity of sensorimotor memory involved in motor control and object manipulation has not yet been explored. In addition to assessing working memory for object weights using an explicit perceptual test, we also assessed memory for weight using an implicit measure based on motor performance. The vertical lifting or LF and the horizontal GF applied during lifts, measured from force sensors embedded in the object handles, were used to assess participants’ ability to predict object weights. In Experiment 1, participants were presented with sets of 3, 4, 5, 7 or 9 objects. They lifted each object in the set and then repeated this procedure 10 times with the objects lifted either in a fixed or random order. Sensorimotor memory was examined by assessing, as a function of object set size, how lifting forces changed across successive lifts of a given object. The results indicated that force scaling for weight improved across the repetitions of lifts, and was better for smaller set sizes when compared to the larger set sizes, with the latter effect being clearest when objects were lifting in a random order. However, in general the observed force scaling was poorly scaled. In Experiment 2, working memory was examined in two ways: by determining participants’ ability to detect a change in the weight of one of 3 to 6 objects lifted twice, and by simultaneously measuring the fingertip forces applied when lifting the objects. The results showed that, even when presented with 6 objects, participants were extremely accurate in explicitly detecting which object changed weight. In addition, force scaling for object weight, which was generally quite weak, was similar across set sizes. Thus, a capacity limit less than 6 was not found for either the explicit or implicit measures collected.
Resumo:
The self-reference effect (SRE) in memory is thought to depend on specialized mechanisms that enhance memory for self-relevant information. We investigated whether these mechanisms can be engaged “by proxy” when we simulate other people, by asking participants to interact with two virtual partners: one similar and one dissimilar to self. Participants viewed pairs of objects and picked one for themselves, for their similar partner, or their dissimilar partner. A surprise memory test followed that required participants to identify which object of each pair was chosen, and for whom. Finally, participants were shown both partners’ object pairs again, and asked to indicate their personal preference. Four key findings were observed. Overlap between participants’ own choice and those made for their partner was significantly higher for the similar than the dissimilar partner, revealing participants’ use of their own preferences to simulate the similar partner. Recollection of chosen objects was significantly higher for self than for both partners and, critically, was significantly higher for similar than dissimilar partners. Source confusion between self and the similar partner was also higher. These findings suggest that self-reference by proxy enhances memory for non-self-relevant material, and we consider the theoretical implications for functional interpretation of the SRE.
Resumo:
Cache-coherent non uniform memory access (ccNUMA) architecture is a standard design pattern for contemporary multicore processors, and future generations of architectures are likely to be NUMA. NUMA architectures create new challenges for managed runtime systems. Memory-intensive applications use the system’s distributed memory banks to allocate data, and the automatic memory manager collects garbage left in these memory banks. The garbage collector may need to access remote memory banks, which entails access latency overhead and potential bandwidth saturation for the interconnection between memory banks. This dissertation makes five significant contributions to garbage collection on NUMA systems, with a case study implementation using the Hotspot Java Virtual Machine. It empirically studies data locality for a Stop-The-World garbage collector when tracing connected objects in NUMA heaps. First, it identifies a locality richness which exists naturally in connected objects that contain a root object and its reachable set— ‘rooted sub-graphs’. Second, this dissertation leverages the locality characteristic of rooted sub-graphs to develop a new NUMA-aware garbage collection mechanism. A garbage collector thread processes a local root and its reachable set, which is likely to have a large number of objects in the same NUMA node. Third, a garbage collector thread steals references from sibling threads that run on the same NUMA node to improve data locality. This research evaluates the new NUMA-aware garbage collector using seven benchmarks of an established real-world DaCapo benchmark suite. In addition, evaluation involves a widely used SPECjbb benchmark and Neo4J graph database Java benchmark, as well as an artificial benchmark. The results of the NUMA-aware garbage collector on a multi-hop NUMA architecture show an average of 15% performance improvement. Furthermore, this performance gain is shown to be as a result of an improved NUMA memory access in a ccNUMA system. Fourth, the existing Hotspot JVM adaptive policy for configuring the number of garbage collection threads is shown to be suboptimal for current NUMA machines. The policy uses outdated assumptions and it generates a constant thread count. In fact, the Hotspot JVM still uses this policy in the production version. This research shows that the optimal number of garbage collection threads is application-specific and configuring the optimal number of garbage collection threads yields better collection throughput than the default policy. Fifth, this dissertation designs and implements a runtime technique, which involves heuristics from dynamic collection behavior to calculate an optimal number of garbage collector threads for each collection cycle. The results show an average of 21% improvements to the garbage collection performance for DaCapo benchmarks.
Resumo:
The self-ordered pointing test (SOPT; Petrides & Milner, 1982) is a test of non-spatial executive working memory requiring the ability to generate and monitor a sequence of responses. Although used with developmental clinical populations there are few normative data against which to compare atypical performance. Typically developing children (5!11 years) and young adults performed two versions of the SOPT, one using pictures of familiar objects and the other hard-to-verbalise abstract designs. Performance improved with age but the children did not reach adult levels of performance. Participants of all ages found the object condition easier than the abstract condition, suggesting that verbal processes are utilised by the SOPT. However, performance on the task was largely independent from verbal and nonverbal cognitive ability. Overall the results suggest that the SOPT is a sensitive measure of executive working memory.
Resumo:
Ongoing quest for finding treatment against memory loss seen in aging and in many neurological and neurodegenerative diseases, so far has been unsuccessful and memory enhancers are seen as a potential remedy against this brain dysfunction. Recently, we showed that gene corresponding to a protein called regulator of G-protein signaling 14 of 414 amino acids (RGS14414) is a robust memory enhancer (Lopez-Aranda et al. 2009: Science). RGS14414-treatment in area V2 of visual cortex caused memory enhancement to such extent that it converted short-term object recognition memory (ORM) of 45min into long lasting long-term memory that could be traced even after many months. Now, through targeting of multiple receptors and molecules known to be involved in memory processing, we found that GluR2 subunit of AMPA receptor might be key to memory enhancement in RGS-animals. RGS14-animals showed a progressive increase in GluR2 protein expression while processing an object information which reached to highest level after 60min of object exposure, a time period required for conversion of short-term ORM into long-term memory in our laboratory set up. Normal rats could retain an object information in brain for 45min (short-term) and not for 60min. However, RGS-treated rats are able to retain the same information for 24h or longer (long-term). Therefore, highest expression of GluR2 subunit seen at 60min suggests that this protein might be key in memory enhancement and conversion to long-term memory in RGS-animals. In addition, we will also discuss the implication of Hebbian plasticity and interaction of brain circuits in memory enhancement.
Resumo:
Des interventions ciblant l’amélioration cognitive sont de plus en plus à l’intérêt dans nombreux domaines, y compris la neuropsychologie. Bien qu'il existe de nombreuses méthodes pour maximiser le potentiel cognitif de quelqu’un, ils sont rarement appuyé par la recherche scientifique. D’abord, ce mémoire examine brièvement l'état des interventions d'amélioration cognitives. Il décrit premièrement les faiblesses observées dans ces pratiques et par conséquent il établit un modèle standard contre lequel on pourrait et devrait évaluer les diverses techniques ciblant l'amélioration cognitive. Une étude de recherche est ensuite présenté qui considère un nouvel outil de l'amélioration cognitive, une tâche d’entrainement perceptivo-cognitive : 3-dimensional multiple object tracking (3D-MOT). Il examine les preuves actuelles pour le 3D-MOT auprès du modèle standard proposé. Les résultats de ce projet démontrent de l’augmentation dans les capacités d’attention, de mémoire de travail visuel et de vitesse de traitement d’information. Cette étude représente la première étape dans la démarche vers l’établissement du 3D-MOT comme un outil d’amélioration cognitive.
Resumo:
Des interventions ciblant l’amélioration cognitive sont de plus en plus à l’intérêt dans nombreux domaines, y compris la neuropsychologie. Bien qu'il existe de nombreuses méthodes pour maximiser le potentiel cognitif de quelqu’un, ils sont rarement appuyé par la recherche scientifique. D’abord, ce mémoire examine brièvement l'état des interventions d'amélioration cognitives. Il décrit premièrement les faiblesses observées dans ces pratiques et par conséquent il établit un modèle standard contre lequel on pourrait et devrait évaluer les diverses techniques ciblant l'amélioration cognitive. Une étude de recherche est ensuite présenté qui considère un nouvel outil de l'amélioration cognitive, une tâche d’entrainement perceptivo-cognitive : 3-dimensional multiple object tracking (3D-MOT). Il examine les preuves actuelles pour le 3D-MOT auprès du modèle standard proposé. Les résultats de ce projet démontrent de l’augmentation dans les capacités d’attention, de mémoire de travail visuel et de vitesse de traitement d’information. Cette étude représente la première étape dans la démarche vers l’établissement du 3D-MOT comme un outil d’amélioration cognitive.