982 resultados para OXIDE-FILMS
Resumo:
The physical and electrochemical properties of Ti-SnO2/Sb electrodes obtained by the thermal decomposition of solutions of the precursor salts SnCl2×2H2O/SbCl3 and SnSO4/Sb2(SO4)3 were investigated. The reversibility of the cyclic voltammetric response of the Fe(CN)6(4-)/Fe(CN)6(3-) redox couple was assessed using the obtained electrodes. Their catalytic activity for the oxygen-evolving reaction and maximum capacity for electronic transfer were also evaluated by potential and current linear scans in 0.5 mol L-1 H2SO4. Additionally, scanning electron microscopy analyses allowed the visualization of the morphology of the oxide films obtained. The best results were presented by the electrodes obtained from the chloride salt precursors.
Resumo:
Surface and electrochemical properties of the dimensionally stable anode Ti/(Ru0.3Ti0.7)O2 were studied as a function of the annealing temperature using different conditions in order to perform the cooling process of the oxide films (conventional thermal shock and the slow cooling processes). It was found that surface and electrochemical properties for the oxygen evolution reaction are both affected through the cooling process, being the electrode prepared at 400 ºC using the slow cooling process the less susceptible to wear. The Tafel slope obtained in the high overpotential domain was analysed in light of the apparent charge transfer coefficient.
Resumo:
We report results on the electronic, vibrational, and optical properties of SnO(2) obtained using first-principles calculations performed within the density functional theory. All the calculated phonon frequencies, real and imaginary parts of complex dielectric function, the energy-loss spectrum, the refractive index, the extinction, and the absorption coefficients show good agreement with experimental results. Based on our calculations, the SnO(2) electron and hole effective masses were found to be strongly anisotropic. The lattice contribution to the low-frequency region of the SnO(2) dielectric function arising from optical phonons was also determined resulting the values of E > (1aSyen) (latt) (0) = 14.6 and E > (1ayen) (latt) (0) = 10.7 for directions perpendicular and parallel to the tetragonal c-axis, respectively. This is in excellent agreement with the available experimental data. After adding the electronic contribution to the lattice contribution, a total average value of E >(1)(0) = 18.2 is predicted for the static permittivity constant of SnO(2).
Resumo:
Hydrogen interaction with oxide films grown on iron electrodes at open circuit potential (E-oc) and in the passive region (+0.30 V-ECS) was studied by chronopotentiometry, chronoamperometry and electrochemical impedance spectroscopy techniques. The results were obtained in deaerated 0.3 mol L-1 H3BO3 + 0.075 mol L-1 Na2B4O7 (BB, pH 8.4) solution before, during and after hydrogen permeation. The iron oxide film modification was also investigated by means of in situ X-ray absorption near-edge spectroscopy (XANES) and scanning electrochemical microscopy (SECM) before and during hydrogen permeation. The main conclusion was that the passive film is reduced during the hydrogen diffusion. The hydrogen permeation stabilizes the iron surface at a potential close to the thermodynamic water stability line where hydrogen evolution can occur. The stationary condition required for the determination of the permeation parameters cannot be easily attained on iron surface during hydrogen permeation. Moreover, additional attention must be paid when obtaining the transport parameters using the classical permeation cell. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Metal ceramic restorations matches aesthetic and strength, and in your making occurs an interface oxide layer, wetting resulting and atomic and ionic interactions resulting between metal, oxide and porcelain. However, frequent clinical fails occurs in this restoration type, because lost homogeneous deposition oxide layer and lost interface bond. Thus, in this study, thought depositate homogeneous oxide films above Ni-Cr samples surfaces polite previously, at plasma oxide environment. Six samples was oxided at 300 and 400ºC at one hour, and two samples was oxided in a comum chamber at 900ºC, and then were characterized: optical microscopic, electronic microscopic, micro hardness, and X ray difratometry. Colors stripes were observed at six samples plasma oxided and a grey surface those comum oxided, thus like: hardness increase, and several oxides from basic metals (Ni-Cr)
Resumo:
Ti-6Al-4V alloy is one of the most frequently used Ti alloys with diverse applications in aerospace and biomedical areas due to its favorable mechanical properties, corrosion resistance and biocompatibility. Meanwhile, its surface can stiffer intense corrosion caused by wear processes due to its poor tribological properties. Thus in the present study, PIII processing of Ti-6Al-4V alloy was carried out to evaluate its corrosion resistance in 3.5% NaCl solution. Two different sets of Ti-6Al-4V samples were PIII treated, varying the plasma gases and the treatment time. The corrosion behavior is correlated with the surface morphology, and the nitrogen content. SEM micrographs of the untreated sample reveal a typical two-phase structure. PIII processing promotes surface sputtering and the surface morphology is completely different for samples treated with N-2/H-2 mixture and N-2 only. The highest penetration of nitrogen (similar to 88 nm), corresponding to 33% of N-2 was obtained for the sample treated with N-2/H-2 mixture for 1:30 h. The corrosion behavior of the samples was investigated by a potentiodynamic polarization method. A large passive region of the polarization curves (similar to 1.5 V), associated with the formation of a protective film, was observed for all samples. The passive current density (similar to 3 x 10(-6) A cm(-2)) of the PIII-treated Ti-6Al-4V samples is about 10 times higher than for the untreated sample. This current value is still rather low and maintains good corrosion resistance. The anodic branches of the polarization curves for all treated Ti-6Al-4V samples demonstrate also that the oxide films break down at approximately 1.6 V, forming an active region. Although the sample treated by N-2/H-2 mixture for 1.30 It has thicker nitrogen enriched layer, better corrosion resistance is obtained for the PIII process performed with N, gas only. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
This work makes use of the Pechini process for synthesis of the solutions and the dip-coating process for the addition of zirconium oxide films pure and doped cerium metal substrates. The metals with ceramic substrates were subjected to severe conditions of salinity. The x-ray fluorescence of the substrate showed a great diversity of chemical elements. The x-ray diffraction of the samples showed the phase of iron substrate because the thickness of nano-thin film. Tests using an LPR probe showed that the film presents with zirconia corrosion independent of film thickness. The substrates of ZrO2-doped ceria showed low chemical attack of the salt in films with less than 15 dives. The results imply that ultrathin films are shown in protecting metallic substrates
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
SnO2 coatings were deposited by a sol-gel dip-coating process to shield fluoroindate glasses (40In-F-3:16BaF(2):20SrF(2):20ZnF(2):2NaF:2GaF(3)) against corrosion in aqueous environments. The effect of the number of coating applications and of the withdrawal speed on the thickness, density and roughness of tin oxide films was investigated by X-ray reflectivity. Film thickness increases both with the number of coating applications and the withdrawal speed. The aqueous leaching of uncoated and SnO2-coated fluoroindate glasses was studied by scanning electron microscopy (SEM) and infrared spectroscopy (FTIR), showing that the glass surface was protected against hydrolytic attack. (C) 1999 Elsevier B.V. B.V. All rights reserved.
Resumo:
Hydrogen interaction with oxide films grown on iron electrodes at open circuit potential (E-oc) and in the passive region (+0.30 V-ECS) was studied by chronopotentiometry, chronoamperometry and electrochemical impedance spectroscopy techniques. The results were obtained in deaerated 0.3 mol L-1 H3BO3 + 0.075 mol L-1 Na2B4O7 (BB, pH 8.4) solution before, during and after hydrogen permeation. The iron oxide film modification was also investigated by means of in situ X-ray absorption near-edge spectroscopy (XANES) and scanning electrochemical microscopy (SECM) before and during hydrogen permeation. The main conclusion was that the passive film is reduced during the hydrogen diffusion. The hydrogen permeation stabilizes the iron surface at a potential close to the thermodynamic water stability line where hydrogen evolution can occur. The stationary condition required for the determination of the permeation parameters cannot be easily attained on iron surface during hydrogen permeation. Moreover, additional attention must be paid when obtaining the transport parameters using the classical permeation cell. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The synthesis and characterization of graphite oxide (GO), graphene (GS), and the composites: GS-CeO2 and GO-CeO2 are reported. This synthesis was carried out by mixing aqueous solutions of CeCl3 center dot 7H(2)O and GO, which yields the oxidized composite GO-CeO2. GO-CeO2 was hydrothermally reduced with ethylene glycol, at 120 A degrees C, yielding the reduced composite GS-CeO2. GO, GS ,and the composites with CeO2 were characterized by CHN, TG/DTG, BET, XRD, SEM microscopy, FTIR, and Raman spectroscopy. The estimation of crystallite size of CeO2 anchored on GO and on GS by Raman, XRD, and SEM agreed very well showing diameters about 5 nm. The role of particles of CeO2 coating carbon sheets of GO and GS was discussed.