992 resultados para OVERTURNING CIRCULATION


Relevância:

70.00% 70.00%

Publicador:

Resumo:

We use a state-of-the-art ocean general circulation and biogeochemistry model to examine the impact of changes in ocean circulation and biogeochemistry in governing the change in ocean carbon-13 and atmospheric CO2 at the last glacial maximum (LGM). We examine 5 different realisations of the ocean's overturning circulation produced by a fully coupled atmosphere-ocean model under LGM forcing and suggested changes in the atmospheric deposition of iron and phytoplankton physiology at the LGM. Measured changes in carbon-13 and carbon-14, as well as a qualitative reconstruction of the change in ocean carbon export are used to evaluate the results. Overall, we find that while a reduction in ocean ventilation at the LGM is necessary to reproduce carbon-13 and carbon-14 observations, this circulation results in a low net sink for atmospheric CO2. In contrast, while biogeochemical processes contribute little to carbon isotopes, we propose that most of the change in atmospheric CO2 was due to such factors. However, the lesser role for circulation means that when all plausible factors are accounted for, most of the necessary CO2 change remains to be explained. This presents a serious challenge to our understanding of the mechanisms behind changes in the global carbon cycle during the geologic past.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Southern Ocean circulation consists of a complicated mixture of processes and phenomena that arise at different time and spatial scales which need to be parametrized in the state-of-the-art climate models. The temporal and spatial scales that give rise to the present-day residual mean circulation are here investigated by calculating the Meridional Overturning Circulation (MOC) in density coordinates from an eddy-permitting global model. The region sensitive to the temporal decomposition is located between 38°S and 63°S, associated with the eddy-induced transport. The ‘‘Bolus’’ component of the residual circulation corresponds to the eddy-induced transport. It is dominated by timescales between 1 month and 1 year. The temporal behavior of the transient eddies is examined in splitting the ‘‘Bolus’’ component into a ‘‘Seasonal’’, an ‘‘Eddy’’ and an ‘‘Inter-monthly’’ component, respectively representing the correlation between density and velocity fluctuations due to the average seasonal cycle, due to mesoscale eddies and due to large-scale motion on timescales longer than one month that is not due to the seasonal cycle. The ‘‘Seasonal’’ bolus cell is important at all latitudes near the surface. The ‘‘Eddy’’ bolus cell is dominant in the thermocline between 50°S and 35°S and over the whole ocean depth at the latitude of the Drake Passage. The ‘‘Inter-monthly’’ bolus cell is important in all density classes and is maximal in the Brazil–Malvinas Confluence and the Agulhas Return Current. The spatial decomposition indicates that a large part of the Eulerian mean circulation is recovered for spatial scales larger than 11.25°, implying that small-scale meanders in the Antarctic Circumpolar Current (ACC), near the Subantarctic and Polar Fronts, and near the Subtropical Front are important in the compensation of the Eulerian mean flow.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Walker circulation is one of the major components of the large-scale tropical atmospheric circulation and variations in its strength are critical to equatorial Pacific Ocean circulation. It has been argued in the literature that during the 20th century the Walker circulation weakened, and that this weakening was attributable to anthropogenic climate change. By using updated observations, we show that there has been a rapid interdecadal enhancement of the Walker circulation since the late 1990s. Associated with this enhancement is enhanced precipitation in the tropical western Pacific, anomalous westerlies in the upper troposphere, descent in the central and eastern tropical Pacific, and anomalous surface easterlies in the western and central tropical Pacific. The characteristics of associated oceanic changes are a strengthened thermocline slope and an enhanced zonal SST gradient across the tropical Pacific. Many characteristics of these changes are similar to those associated with the mid-1970s climate shift with an opposite sign. We also show that the interdecadal variability of the Walker circulation in the tropical Pacific is inversely correlated to the interdecadal variability of the zonal circulation in the tropical Atlantic. An enhancement of the Walker circulation in the tropical Pacific is associated with a weakening zonal circulation in the tropical Atlantic and vise versa, implying an inter-Atlantic-Pacific connection of the zonal overturning circulation variation. Whether these recent changes will be sustained is not yet clear, but our research highlights the importance of understanding the interdecadal variability, as well as the long-term trends, that influence tropical circulation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Global ocean circulation is an important factor in climate variability and change. In particular, changes in the strength of the Atlantic meridional overturning circulation (AMOC) have been implicated in ancient climate events, as well as in recent climate anomalies such as the rapid warming of the North Atlantic Ocean in the mid-1990s. A series of moored current meters and temperature sensors deployed in the Atlantic at 26° N known as the RAPID-MOCHA array has been used to monitor the strength of meridional overturning since 2004. The data indicate a decline in this strength over the period 2004–20123. Here, using additional observations and climate model simulations we suggest that this measured decline is not merely a short-term fluctuation, but is part of a substantial reduction in meridional overturning occurring on a decadal timescale.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Geoengineering by injection of reflective aerosols into the stratosphere has been proposed as a way to counteract the warming effect of greenhouse gases by reducing the intensity of solar radiation reaching the surface. Here, climate model simulations are used to examine the effect of geoengineering on the tropical overturning circulation. The strength of the circulation is related to the atmospheric static stability and has implications for tropical rainfall. The tropical circulation is projected to weaken under anthropogenic global warming. Geoengineering with stratospheric sulfate aerosol does not mitigate this weakening of the circulation. This response is due to a fast adjustment of the troposphere to radiative heating from the aerosol layer. This effect is not captured when geoengineering is modelled as a reduction in total solar irradiance, suggesting caution is required when interpreting model results from solar dimming experiments as analogues for stratospheric aerosol geoengineering.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In the 1960s North Atlantic sea surface temperatures (SST) cooled rapidly. The magnitude of the cooling was largest in the North Atlantic subpolar gyre (SPG), and was coincident with a rapid freshening of the SPG. Here we analyze hindcasts of the 1960s North Atlantic cooling made with the UK Met Office’s decadal prediction system (DePreSys), which is initialised using observations. It is shown that DePreSys captures—with a lead time of several years—the observed cooling and freshening of the North Atlantic SPG. DePreSys also captures changes in SST over the wider North Atlantic and surface climate impacts over the wider region, such as changes in atmospheric circulation in winter and sea ice extent. We show that initialisation of an anomalously weak Atlantic Meridional Overturning Circulation (AMOC), and hence weak northward heat transport, is crucial for DePreSys to predict the magnitude of the observed cooling. Such an anomalously weak AMOC is not captured when ocean observations are not assimilated (i.e. it is not a forced response in this model). The freshening of the SPG is also dominated by ocean salt transport changes in DePreSys; in particular, the simulation of advective freshwater anomalies analogous to the Great Salinity Anomaly were key. Therefore, DePreSys suggests that ocean dynamics played an important role in the cooling of the North Atlantic in the 1960s, and that this event was predictable.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

ÈN]A trans-oceanic section at 24.5°N in the North Atlantic has been sampled at a decadal frequency. This work demonstrates that the wind-driven component of the Meridional Overturning Circulation (MOC) may be monitored using autonomous profiling floats deployed in the eastern North Atlantic Subtropical Gyre. More than 500 CTD vertical profiles from the surface to 2000 m depth, spanning one year (from April 2002 to March 2003), are used to compute the geostrophic transport stream function at 24.5°N. The baroclinic transport obtained from the autonomous profiling floats is not statistically different than that from three hydrographic cruises carried out in 1957, 1981 and 1992. A good agreement is found between the geostrophic transport stream function and the transport derived from the wind field through the Sverdrup relation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

CO2 and carbon cycle changes in the land, ocean and atmosphere are investigated using the comprehensive carbon cycle-climate model NCAR CSM1.4-carbon. Ensemble simulations are forced with freshwater perturbations applied at the North Atlantic and Southern Ocean deep water formation sites under pre-industrial climate conditions. As a result, the Atlantic Meridional Overturning Circulation reduces in each experiment to varying degrees. The physical climate fields show changes qualitatively in agreement with results documented in the literature, but there is a clear distinction between northern and southern perturbations. Changes in the physical variables, in turn, affect the land and ocean biogeochemical cycles and cause a reduction, or an increase, in the atmospheric CO2 concentration by up to 20 ppmv, depending on the location of the perturbation. In the case of a North Atlantic perturbation, the land biosphere reacts with a strong reduction in carbon stocks in some tropical locations and in high northern latitudes. In contrast, land carbon stocks tend to increase in response to a southern perturbation. The ocean is generally a sink of carbon although large reorganizations occur throughout various basins. The response of the land biosphere is strongest in the tropical regions due to a shift of the Intertropical Convergence Zone. The carbon fingerprints of this shift, either to the south or to the north depending on where the freshwater is applied, can be found most clearly in South America. For this reason, a compilation of various paleoclimate proxy records of Younger Dryas precipitation changes are compared with our model results. The proxy records, in general, show good agreement with the model's response to a North Atlantic freshwater perturbation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The sensitivity of the neodymium isotopic composition (ϵNd) to tectonic rearrangements of seaways is investigated using an Earth System Model of Intermediate Complexity. The shoaling and closure of the Central American Seaway (CAS) is simulated, as well as the opening and deepening of Drake Passage (DP). Multiple series of equilibrium simulations with various intermediate depths are performed for both seaways, providing insight into ϵNd and circulation responses to progressive throughflow evolutions. Furthermore, the sensitivity of these responses to the Atlantic Meridional Overturning Circulation (AMOC) and the neodymium boundary source is examined. Modeled ϵNd changes are compared to sediment core and ferromanganese (Fe-Mn) crust data. The model results indicate that the North Atlantic ϵNd response to the CAS shoaling is highly dependent on the AMOC state, i.e., on the AMOC strength before the shoaling to shallow depths (preclosure). Three scenarios based on different AMOC forcings are discussed, of which the model-data agreement favors a shallow preclosure (Miocene) AMOC (∼6 Sv). The DP opening causes a rather complex circulation response, resulting in an initial South Atlantic ϵNd decrease preceding a larger increase. This feature may be specific to our model setup, which induces a vigorous CAS throughflow that is strongly anticorrelated to the DP throughflow. In freshwater experiments following the DP deepening, ODP Site 1090 is mainly influenced by AMOC and DP throughflow changes, while ODP Site 689 is more strongly influenced by Southern Ocean Meridional Overturning Circulation and CAS throughflow changes. The boundary source uncertainty is largest for shallow seaways and at shallow sites.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The neodymium (Nd) isotopic composition (Nd) of seawater is a quasi-conservative tracer of water mass mixing and is assumed to hold great potential for paleoceanographic studies. Here we present a comprehensive approach for the simulation of the two neodymium isotopes 143Nd, and 144Nd using the Bern3D model, a low resolution ocean model. The high computational efficiency of the Bern3D model in conjunction with our comprehensive approach allows us to systematically and extensively explore the sensitivity of Nd concentrations and Nd to the parametrisation of sources and sinks. Previous studies have been restricted in doing so either by the chosen approach or by computational costs. Our study thus presents the most comprehensive survey of the marine Nd cycle to date. Our model simulates both Nd concentrations as well as Nd in good agreement with observations. Nd covaries with salinity, thus underlining its potential as a water mass proxy. Results confirm that the continental margins are required as a Nd source to simulate Nd concentrations and Nd consistent with observations. We estimate this source to be slightly smaller than reported in previous studies and find that above a certain magnitude its magnitude affects Nd only to a small extent. On the other hand, the parametrisation of the reversible scavenging considerably affects the ability of the model to simulate both, Nd concentrations and Nd. Furthermore, despite their small contribution, we find dust and rivers to be important components of the Nd cycle. In additional experiments, we systematically varied the diapycnal diffusivity as well as the Atlantic-to-Pacific freshwater flux to explore the sensitivity of Nd concentrations and its isotopic signature to the strength and geometry of the overturning circulation. These experiments reveal that Nd concentrations and Nd are comparatively little affected by variations in diapycnal diffusivity and the Atlantic-to-Pacific freshwater flux. In contrast, an adequate representation of Nd sources and sinks is crucial to simulate Nd concentrations and Nd consistent with observations. The good agreement of our results with observations paves the way for the evaluation of the paleoceanographic potential of Nd in further model studies.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Large uncertainties exist concerning the impact of Greenland ice sheet melting on the Atlantic meridional overturning circulation (AMOC) in the future, partly due to different sensitivity of the AMOC to freshwater input in the North Atlantic among climate models. Here we analyse five projections from different coupled ocean–atmosphere models with an additional 0.1 Sv (1 Sv = 10 6 m3/s) of freshwater released around Greenland between 2050 and 2089. We find on average a further weakening of the AMOC at 26°N of 1.1 ± 0.6 Sv representing a 27 ± 14% supplementary weakening in 2080–2089, as compared to the weakening relative to 2006–2015 due to the effect of the external forcing only. This weakening is lower than what has been found with the same ensemble of models in an identical experimen - tal set-up but under recent historical climate conditions. This lower sensitivity in a warmer world is explained by two main factors. First, a tendency of decoupling is detected between the surface and the deep ocean caused by an increased thermal stratification in the North Atlantic under the effect of global warming. This induces a shoaling of ocean deep ventilation through convection hence ventilating only intermediate levels. The second important effect concerns the so-called Canary Current freshwater leakage; a process by which additionally released fresh water in the North Atlantic leaks along the Canary Current and escapes the convection zones towards the subtropical area. This leakage is increasing in a warming climate, which is a consequence of decreasing gyres asymmetry due to changes in Ekman rumping. We suggest that these modifications are related with the northward shift of the jet stream in a warmer world. For these two reasons the AMOC is less susceptible to freshwater perturbations (near the deep water formation sides) in the North Atlantic as compared to the recent historical climate conditions. Finally, we propose a bilinear model that accounts for the two former processes to give a conceptual explanation about the decreasing AMOC sensitivity due to freshwater input. Within the limit of this bilinear model, we find that 62 ± 8% of the reduction in sensitivity is related with the changes in gyre asymmetry and freshwater leakage and 38 ± 8% is due to the reduction in deep ocean ventilation associated with the increased stratification in the North Atlantic.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Using a coupled model of intermediate complexity the sensitivity of the last glacial maximum (LGM) Atlantic meridional overturning circulation (AMOC) to the strength of surface wind-stress is investigated. A threshold is found below which North Atlantic deep water formation (DWF) takes place south of Greenland and the AMOC is relatively weak. Above this threshold, DWF occurs north of the Greenland-Scotland ridge, leading to a vigorous AMOC. This nonlinear behavior is explained through enhanced salt transport by the wind-driven gyre circulation and the overturning itself. Both pattern and magnitude of the Nordic Sea's temperature difference between strong and weak AMOC states are consistent with those reconstructed for abrupt climate changes of the last glacial period. Our results thus point to a potentially relevant role of surface winds in these phenomena.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-08

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The study of tides and their interactions with the complex dynamics of the global ocean represents a crucial challenge in ocean modelling. This thesis aims to deepen this study from a dynamical point of view, analysing what are the tidal effects on the general circulation of the ocean. We perform different experiments of a mesoscale-permitting global ocean model forced by both atmospheric fields and astronomical tidal potential, and we implement two parametrizations to include in the model tidal phenomena that are currently unresolved, with particular emphasis to the topographic wave drag for locally dissipating internal waves. An additional experiment using a mesoscale-resolving configuration is used to compare the simulated tides at different resolutions with observed data. We find that the accuracy of modelled tides strongly depends on the region and harmonic component of interest, even though the increased resolution allows to improve the modelled topography and resolve more intense internal waves. We then focus on the impact of tides in the Atlantic Ocean and find that tides weaken the overturning circulation during the analysed period from 1981 to 2007, even though the interannual differences strongly change in both amplitude and phase. The zonally integrated momentum balance shows that tide changes the water stratification at the zonal boundaries, modifying the pressure and therefore the geostrophic balance over the entire basin. Finally, we describe the overturning circulation in the Mediterranean Sea computing the meridional and zonal streamfunctions both in the Eulerian and residual frameworks. The circulation is characterised by different cells, and their forcing processes are described with particular emphasis to the role of mesoscale and a transient climatic event. We complete the description of the overturning circulation giving evidence for the first time to the connection between meridional and zonal cells.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Mediterranean Sea is a semi-enclosed basin connected to the Atlantic Ocean through the narrow and shallow Strait of Gibraltar and further subdivided in two different sub-basins, the Eastern Mediterranean and the Western Mediterranean, connected through the Stait of Sicily. On annual basis, a net heat budget of −7 W/m2, combined with exceeding evaporation over precipation and runoff together with wind stress, is responsible for the antiestuarine character of the zonal thermoaline circulation. The outflow at Gibraltar Strait is mainly composed of Levantine Intermediate Water (LIW) and deep water masses formed in the Western Mediterranean Sea. The aim of this thesis is to validate and quantitatively assess the main routes of water masses composing the ouflow at Gibraltar Strait, using for the first time in the Mediterranean Sea a lagrangian interpretation of the eulerian velocity field produced from an eddy-resolving reanalysis dataset, spanning from 2000 to 2012. A lagrangian model named Ariane is used to map out three-dimensional trajectories in order to describe the pathways of water mass transport from the Strait of Sicily, the Gulf of Lyon and the Northern Tyrrhenian Sea to the Gibraltar Strait. Numerical experiments were carried out by seeding millions of particles in the Strait of Gibraltar and following them backwards in time to track the origins of water masses and transport exchanged between the different sections of the Mediterranean. Finally, the main routes of the intermediate and deep water masses are reconstructed from virtual particles trajectories, which highlight the role of the Western Mediterranean Deep Water (WMDW) as the main contributor to the Gibraltar Strait outflow. For the first time, the quantitative description of the flow of water masses coming from the Eastern Mediterranean towards the Gibraltar Strait is provided and a new route that directly links the Northern Tyrrhenian Sea to Gibralatr Strait has been detected.