867 resultados para ORTHOGONAL FREQUENCY DIVISION MULTIPLEXING


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Theoretical investigations have been carried out to analyze and compare the link power budget and power dissipation of non-return-to-zero (NRZ), pulse amplitude modulation-4 (PAM-4), carrierless amplitude and phase modulation-16 (CAP-16) and 16-quadrature amplitude modulation-orthogonal frequency division multiplexing (16-QAM-OFDM) systems for data center interconnect scenarios. It is shown that for multimode fiber (MMF) links, NRZ modulation schemes with electronic equalization offer the best link power budget margins with the least power dissipation for short transmission distances up to 200 m; while OOFDM is the only scheme which can support a distance of 300 m albeit with power dissipation as high as 4 times that of NRZ. For short single mode fiber (SMF) links, all the modulation schemes offer similar link power budget margins for fiber lengths up to 15 km, but NRZ and PAM-4 are preferable due to their system simplicity and low power consumption. For lengths of up to 30 km, CAP-16 and OOFDM are required although the schemes consume 2 and 4 times as much power respectively compared to that of NRZ. OOFDM alone allows link operation up to 35 km distances. © 1983-2012 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Simulations have been performed to compare the link power budget and power dissipation of carrierless amplitude and phase modulation-64 (CAP-64) and 64-quadrature amplitude modulation-orthogonal frequency division multiplexing (64-QAM-OFDM) systems over feedforward error correction (FEC) enhanced plastic optical fibre (POF) links using light emitting diodes (LEDs). It is shown that CAP-64 outperforms 64-QAM-OFDM and supports record high 2.1Gb/s over 50m POF transmission. The CAP-64 and 64-QAM-OFDM links consume similar powers which are 2 (2.5) times of that of NRZ for the single POF link (twin POF links) case. © 2012 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A differential recursive scheme for suppression of Peak to average power ratio (PAPR) for Orthogonal frequency division multiplexing (OFDM) signal is proposed in this thesis. The pseudo-randomized modulating vector for the subcarrier series is differentially phase-encoded between successive components in frequency domain first, and recursion manipulates several samples of Inverse fast Fourier transformation (IFFT) output in time domain. Theoretical analysis and experimental result exhibit advantage of differential recursive scheme over direct output scheme in PAPR suppression. And the overall block diagram of the scheme is also given.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, an efficient iterative discrete Fourier transform (DFT) -based channel estimator with good performance for multiple-input and multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) systems such as IEEE 802.11n which retain some sub-carriers as null sub-carriers (or virtual carriers) is proposed. In order to eliminate the mean-square error (MSE) floor effect existed in conventional DFT-based channel estimators, we proposed a low-complexity method to detect the significant channel impulse response (CIR) taps, which neither need any statistical channel information nor a predetermined threshold value. Analysis and simulation results show that the proposed method has much better performance than conventional DFT-based channel estimators and without MSE floor effect.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis details an experimental and simulation investigation of some novel all-optical signal processing techniques for future optical communication networks. These all-optical techniques include modulation format conversion, phase discrimination and clock recovery. The methods detailed in this thesis use the nonlinearities associated with semiconductor optical amplifiers (SOA) to manipulate signals in the optical domain. Chapter 1 provides an introduction into the work detailed in this thesis, discusses the increased demand for capacity in today’s optical fibre networks and finally explains why all-optical signal processing may be of interest for future optical networks. Chapter 2 discusses the relevant background information required to fully understand the all-optical techniques demonstrated in this thesis. Chapter 3 details some pump-probe measurement techniques used to calculate the gain and phase recovery times of a long SOA. A remarkably fast gain recovery is observed and the wavelength dependent nature of this recovery is investigated. Chapter 4 discusses the experimental demonstration of an all-optical modulation conversion technique which can convert on-off- keyed data into either duobinary or alternative mark inversion. In Chapter 5 a novel phase sensitive frequency conversion scheme capable of extracting the two orthogonal components of a quadrature phase modulated signal into two separate frequencies is demonstrated. Chapter 6 investigates a novel all-optical clock recovery technique for phase modulated optical orthogonal frequency division multiplexing superchannels and finally Chapter 7 provides a brief conclusion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Orthogonal frequency division multiplexing(OFDM) is becoming a fundamental technology in future generation wireless communications. Call admission control is an effective mechanism to guarantee resilient, efficient, and quality-of-service (QoS) services in wireless mobile networks. In this paper, we present several call admission control algorithms for OFDM-based wireless multiservice networks. Call connection requests are differentiated into narrow-band calls and wide-band calls. For either class of calls, the traffic process is characterized as batch arrival since each call may request multiple subcarriers to satisfy its QoS requirement. The batch size is a random variable following a probability mass function (PMF) with realistically maximum value. In addition, the service times for wide-band and narrow-band calls are different. Following this, we perform a tele-traffic queueing analysis for OFDM-based wireless multiservice networks. The formulae for the significant performance metrics call blocking probability and bandwidth utilization are developed. Numerical investigations are presented to demonstrate the interaction between key parameters and performance metrics. The performance tradeoff among different call admission control algorithms is discussed. Moreover, the analytical model has been validated by simulation. The methodology as well as the result provides an efficient tool for planning next-generation OFDM-based broadband wireless access systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this letter, the performance bound of the IEEE 802.16d channel is examined analytically in order to gain an insight into its theoretical potential. Different design strategies, such as orthogonal frequency division multiplexing (OFDM) and single-carrier frequency-domain equalization (SC-FDE), time-domain decision feedback equalization (DFE), and sphere decoder (SD) techniques are discussed and compared to the theoretical bound.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Here, the Jacobi iterative algorithm is applied to combat intersymbol interference (ISI) caused by frequency-selective channels. The performance bound of the equaliser is analysed in order to gain an insight into its asymptotic behaviour. Because of the error propagation problem, the potential of this algorithm is not reached in an uncoded system. However, its extension to a coded system with the application of the turbo-processing principle results in a new turbo equalisation algorithm, which demonstrates comparable performance with reduced complexity compared with some existing filter-based turbo equalisation schemes; and superior performance compared with some frequency domain solutions, such as orthogonal frequency division multiplexing and single-carrier frequency domain equalisation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Orthogonal frequency division multiplexing (OFDM) requires an expensive linear amplifier at the transmitter due to its high peak-to-average power ratio (PAPR). Single carrier with cyclic prefix (SC-CP) is a closely related transmission scheme that possesses most of the benefits of OFDM but does not have the PAPR problem. Although in a multipath environment, SC-CP is very robust to frequency-selective fading, it is sensitive to the time-selective fading characteristics of the wireless channel that disturbs the orthogonality of the channel matrix (CM) and increases the computational complexity of the receiver. In this paper, we propose a time-domain low-complexity iterative algorithm to compensate for the effects of time selectivity of the channel that exploits the sparsity present in the channel convolution matrix. Simulation results show the superior performance of the proposed algorithm over the standard linear minimum mean-square error (L-MMSE) equalizer for SC-CP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We analyze the effect of different pulse shaping filters on the orthogonal frequency division multiplexing (OFDM) based wireless local area network (LAN) systems in this paper. In particular, the performances of the square root raised cosine (RRC) pulses with different rolloff factors are evaluated and compared. This work provides some guidances on how to choose RRC pulses in practical WLAN systems, e.g., the selection of rolloff factor, truncation length, oversampling rate, quantization levels, etc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This letter investigates performance enhancement by the concept of multi-carrier index keying in orthogonal frequency division multiplexing (OFDM) systems. For the performance evaluation, a tight closed-form approximation of the bit error rate (BER) is derived introducing the expression for the number of bit errors occurring in both the index domain and the complex domain, in the presence of both imperfect and perfect detection of active multi-carrier indices. The accuracy of the derived BER results for various cases are validated using simulations, which can provide accuracy within 1 dB at favorable channels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we propose a sparse signal modulation (SSM) method for precoded orthogonal frequency division multiplexing (OFDM) systems and study the signal detection. Although a receiver is able to exploit a path diversity gain with random precoding in OFDM, the complexity of the receiver is usually high as the orthogonality is not retained due to precoding. However, with SSM, we can derive a low-complexity detector that can provide reasonably good performances with a low sparsity ratio based on the notion of compressive sensing (CS). An important feature of a CS detector is that it can estimate SSM signals with a small fraction of the received signals over sub-carriers. This feature can allow us to build a low cost receiver with a small number of demodulators.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we propose a sparse multi-carrier index keying (MCIK) method for orthogonal frequency division multiplexing (OFDM) system, which uses the indices of sparse sub-carriers to transmit the data, and improve the performance
of signal detection in highly correlated sub-carriers. Although a receiver is able to exploit a power gain with precoding in OFDM, the sensitivity of the signal detection is usually high as the orthogonality is not retained in highly dispersive
environments. To overcome this, we focus on developing the trade-off between the sparsity of the MCIK, correlation, and performances, analyzing the average probability of the error propagation imposed by incorrect index detection over highly correlated sub-carriers. In asymptotic cases, we are able to see how sparsity of MCIK should be designed in order to perform superior to the classical OFDM system. Based on this feature, sparse MCIK based OFDM is a better choice for low detection errors in highly correlated sub-carriers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Densely deployed WiFi networks will play a crucial role in providing the capacity for next generation mobile internet. However, due to increasing interference, overlapped channels in WiFi networks and throughput efficiency degradation, densely deployed WiFi networks is not a guarantee to obtain higher throughput. An emergent challenge is how to efficiently utilize scarce spectrum resources, by matching physical layer resources to traffic demand. In this aspect, access control allocation strategies play a pivotal role but remain too coarse-grained. As a solution, this research proposes a flexible framework for fine-grained channel width adaptation and multi-channel access in WiFi networks. This approach, named SFCA (Sub-carrier Fine-grained Channel Access), adopts DOFDM (Discontinuous Orthogonal Frequency Division Multiplexing) at the PHY layer. It allocates the frequency resource with a sub-carrier granularity, which facilitates the channel width adaptation for multi-channel access and thus brings more flexibility and higher frequency efficiency. The MAC layer uses a frequency-time domain backoff scheme, which combines the popular time-domain BEB scheme with a frequency-domain backoff to decrease access collision, resulting in higher access probability for the contending nodes. SFCA is compared with FICA (an established access scheme) showing significant outperformance. Finally we present results for next generation 802.11ac WiFi networks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ability to exchange keys between users is vital in any wireless based security system. A key generation technique which exploits the randomness of the wireless channel is a promising alternative to existing key distribution techniques, e.g., public key cryptography. In this paper, a secure key generation scheme based on the subcarriers' channel responses in orthogonal frequency-division multiplexing (OFDM) systems is proposed. We first implement a time-variant multipath channel with its channel impulse response modelled as a wide sense stationary (WSS) uncorrelated scattering random process and demonstrate that each subcarrier's channel response is also a WSS random process. We then define the X% coherence time as the time required to produce an X% correlation coefficient in the autocorrelation function (ACF) of each channel tap, and find that when all the channel taps have the same Doppler power spectrum, all subcarriers' channel responses has the same ACF as the channel taps. The subcarrier's channel response is then sampled every X% coherence time and quantized into key bits. All the key sequences' randomness is tested using National Institute of Standards and Technology (NIST) statistical test suite and the results indicate that the commonly used sampling interval as 50% coherence time cannot guarantee the randomness of the key sequence.