928 resultados para OPTICAL CHARACTERIZATION


Relevância:

70.00% 70.00%

Publicador:

Resumo:

A complete characterisation of PV modules for building integration is needed in order to know their influence on the building’s global energy balance. Specifically, certain characteristic parameters should be obtained for each different PV module suitable for building integrated photovoltaics (BIPV), some by direct or indirect measurements at the laboratory, and others by monitoring the element performance mounted in real operating conditions. In the case of transparent building envelopes it is particularly important to perform an optical and thermal characterization of the PV modules that would be integrated in them. This paper addresses the optical characterization of some commercial thin-film PV modules having different degrees of transparency, suitable for building integration in façades. The approach is based on the measurement of the spectral UV/Vis/NIR reflectance and transmittance of the different considered samples, both at normal incidence and as a function of the angle of incidence. With the obtained results, the total and zoned UV, visible and NIR transmission and reflection values are calculated, enabling the correct characterization of the PV modules integrated in façades and the subsequent evaluation of their impact over the electrical, thermal and lighting performance in a building.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This work presents a comprehensive optical characterization of Zn1−xMgxO thin films grown by spray pyrolysis (SP). Absorption measurements show the high potential of this technique to tune the bandgap from 3.30 to 4.11 eV by changing the Mg acetate content in the precursor solution, leading to a change of the Mg-content ranging from 0 up to 35%, as measured by transmission electron microscopy-energy dispersive x-ray spectroscopy. The optical emission of the films obtained by cathodoluminescence and photoluminescence spectroscopy shows a blue shift of the peak position from 3.26 to 3.89 eV with increasing Mg incorporation, with a clear excitonic contribution even at high Mg contents. The linewidth broadening of the absorption and emission spectra as well as the magnitude of the observed Stokes shift are found to significantly increase with the Mg content. This is shown to be related to both potential fluctuations induced by pure statistical alloy disorder and the presence of a tail of band states, the latter dominating for medium Mg contents. Finally, metal–semiconductor–metal photodiodes were fabricated showing a high sensitivity and a blue shift in the cut-off energy from 3.32 to 4.02 eV, i.e., down to 308 nm. The photodiodes present large UV/dark contrast ratios (102 − 107), indicating the viability of SP as a growth technique to fabricate low cost (Zn, Mg)O-based UV photodetectors reaching short wavelengths.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In recent years, nanoscience and nanotechnology has emerged as one of the most important and exciting frontier areas of research interest in almost all fields of science and technology. This technology provides the path of many breakthrough changes in the near future in many areas of advanced technological applications. Nanotechnology is an interdisciplinary area of research and development. The advent of nanotechnology in the modern times and the beginning of its systematic study can be thought of to have begun with a lecture by the famous physicist Richard Feynman. In 1960 he presented a visionary and prophetic lecture at the meeting of the American Physical Society entitled “there is plenty of room at the bottom” where he speculated on the possibility and potential of nanosized materials. Synthesis of nanomaterials and nanostructures are the essential aspects of nanotechnology. Studies on new physical properties and applications of nanomaterials are possible only when materials are made available with desired size, morphology, crystal structure and chemical composition. Cerium oxide (ceria) is one of the important functional materials with high mechanical strength, thermal stability, excellent optical properties, appreciable oxygen ion conductivity and oxygen storage capacity. Ceria finds a variety of applications in mechanical polishing of microelectronic devices, as catalysts for three-way automatic exhaust systems and as additives in ceramics and phosphors. The doped ceria usually has enhanced catalytic and electrical properties, which depend on a series of factors such as the particle size, the structural characteristics, morphology etc. Ceria based solid solutions have been widely identified as promising electrolytes for intermediate temperature solid oxide fuel cells (SOFC). The success of many promising device technologies depends on the suitable powder synthesis techniques. The challenge for introducing new nanopowder synthesis techniques is to preserve high material quality while attaining the desired composition. The method adopted should give reproducible powder properties, high yield and must be time and energy effective. The use of a variety of new materials in many technological applications has been realized through the use of thin films of these materials. Thus the development of any new material will have good application potential if it can be deposited in thin film form with the same properties. The advantageous properties of thin films include the possibility of tailoring the properties according to film thickness, small mass of the materials involved and high surface to volume ratio. The synthesis of polymer nanocomposites is an integral aspect of polymer nanotechnology. By inserting the nanometric inorganic compounds, the properties of polymers can be improved and this has a lot of applications depending upon the inorganic filler material present in the polymer.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Tellurite glasses are photonic materials of special interest to the branch of optoelectronic and communication, due to its important optical properties such as high refractive index, broad IR transmittance, low phonon energy etc. Tellurite glasses are solutions to the search of potential candidates for nonlinear optical devices. Low phonon energy makes it an efficient host for dopant ions like rare earths, allowing a better environment for radiative transitions. The dopant ions maintain majority of their individual properties in the glass matrix. Tellurites are less toxic than chalcogenides, more chemically and thermally stable which makes them a highly suitable fiber material for nonlinear applications in the midinfrared and they are of increased research interest in applications like laser, amplifier, sensor etc. Low melting point and glass transition temperature helps tellurite glass preparation easier than other glass families.In order to probe into the versatility of tellurite glasses in optoelectronic industry; we have synthesized and undertaken various optical studies on tellurite glasses. We have proved that the highly nonlinear tellurite glasses are suitable candidates in optical limiting, with comparatively lower optical limiting threshold. Tuning the optical properties of glasses is an important factor in the optoelectronic research. We have found that thermal poling is an efficient mechanism in tuning the optical properties of these materials. Another important nonlinear phenomenon found in zinc tellurite glasses is their ability to switch from reverse saturable absorption to saturable absorption in the presence of lanthanide ions. The proposed thesis to be submitted will have seven chapters.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present a non-hydrolytic sol-gel combustion method for synthesizing nanocomposites of PbO quantum dots on anatase TiO2 with a high surface area. XRD, electron microscopy, DRS, cathodoluminescence and BET were employed for structural, microstructural and optical characterization of the composites. The photocatalytic activity of TiO2 and PbO/TiO2 was investigated and compared with Degussa P-25. The results indicate that the photocatalytic activity of quantum dot dispersed TiO2 is higher than that of bare TiO2 and much higher than that of commercial Degussa P-25. The origin of enhanced photoreactivity of the synthesized material can be assigned to a synergetic effect of high surface area, higher number of active sites and an engineered band structure in the heterostructure. The mechanisms for photocatalytic activity are discussed based on production of photogenerated reactive species. The knowledge gained through this report open up ideal synthesis routes for designing advanced functional heterostructures with engineered band structure and has important implications in solar energy based applications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Enhancement of localized electric field near metal (plasmonic) nanostructures can have various interesting applications in sensing, imaging, photovoltage generation etc., for which significant efforts are aimed towards developing plasmonic systems with well designed and large electromagnetic response. In this paper, we discuss the wafer scale fabrication and optical characterization of a unique three dimensional plasmonic material. The near field enhancement in the visible range of the electromagnetic spectrum obtained in these structures (order of 106), is close to the fundamental limit that can be obtained in this and similar EM field enhancement schemes. The large near field enhancement has been reflected in a huge Raman signal of graphene layer in close proximity to the plasmonic system, which has been validated with FEM simulations. We have integrated graphene photodetectors with this material to obtain record photovoltage generation, with responsivity as high as A/W. As far as we know, this is the highest sensitivity obtained in any plasmonic-graphene hybrid photodetection system till date.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This report contains the frrst observations made for the Modis Optical Characterization Experiment (MOCE). Data presented here were obtained on the R/V DeSteiguer between 28 August and 8 October along the central California coast and in Monterey Bay. Three types of data are reported here: high spectral resolution radiometry at three depths for seven stations; salinity, temperature, fluorescence and beam attenuation profiles at the same stations; and total suspended matter and suspended organic carbon and nitrogen. [PDF contans 164 pages]

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This report contains results from the fourth cruise of the MODIS Optical Characterization Experiment (MOCE). Also resented are oceanographic data from two MOBY maintenance cruises L-20 and L-25. The MOCE4 cruise was the first NOAAINESDIS-Ied SeaWiFS Initialization cruise during which a variety ofspectroradiometric observations ofthe upper water column and atmosphere were made by investigators from NOAA, the University of Miami, CHORS and MLML. Data presented in this report were obtained by oceanographic CTD profiler: salinity, temperature, dissolved oxygen, beam attenuation and chlorophyll-a fluorescence~ and by water samplers: total suspended matter and suspended organic carbon and nitrogen, salinity and dissolved oxygen. (PDF contains 142 pages).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This report contains results from the second cruise of the Modis Optical Characterization Experiment (MOCE). Data presented here were obtained on the Mexican Research Vessel El Puma between 29 March and 13 April along the Pacific coast of Baja California and in the Gulf of California. Three types of data are reported: high spectral resolution radiometry at three depths for 13 stations; salinity, temperature beam attenuation and chlorophyll-a fluorescence, profiles at the same stations; and total suspended matter and suspended organic carbon and nitrogen.(PDF is 90 pages.)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This report contains results from the third cruise of the Marine Optical Characterization Experiment (Fig. 1). A variety of spectroradiometric observations of the upper water column and atmosphere were made by investigators from the University of Miami, NOAA, CHORS and MLML. Data presented here were obtained by oceanographic CTD profiler: salinity, temperatllre, dissolved oxygen, beam attenuation and chlorophyll-a fluorescence; and by water samplers: total suspended matter and suspended organic carbon and nitrogen, salinity, and dissolved oxygen.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

With the advent of the laser in the year 1960, the field of optics experienced a renaissance from what was considered to be a dull, solved subject to an active area of development, with applications and discoveries which are yet to be exhausted 55 years later. Light is now nearly ubiquitous not only in cutting-edge research in physics, chemistry, and biology, but also in modern technology and infrastructure. One quality of light, that of the imparted radiation pressure force upon reflection from an object, has attracted intense interest from researchers seeking to precisely monitor and control the motional degrees of freedom of an object using light. These optomechanical interactions have inspired myriad proposals, ranging from quantum memories and transducers in quantum information networks to precision metrology of classical forces. Alongside advances in micro- and nano-fabrication, the burgeoning field of optomechanics has yielded a class of highly engineered systems designed to produce strong interactions between light and motion.

Optomechanical crystals are one such system in which the patterning of periodic holes in thin dielectric films traps both light and sound waves to a micro-scale volume. These devices feature strong radiation pressure coupling between high-quality optical cavity modes and internal nanomechanical resonances. Whether for applications in the quantum or classical domain, the utility of optomechanical crystals hinges on the degree to which light radiating from the device, having interacted with mechanical motion, can be collected and detected in an experimental apparatus consisting of conventional optical components such as lenses and optical fibers. While several efficient methods of optical coupling exist to meet this task, most are unsuitable for the cryogenic or vacuum integration required for many applications. The first portion of this dissertation will detail the development of robust and efficient methods of optically coupling optomechanical resonators to optical fibers, with an emphasis on fabrication processes and optical characterization.

I will then proceed to describe a few experiments enabled by the fiber couplers. The first studies the performance of an optomechanical resonator as a precise sensor for continuous position measurement. The sensitivity of the measurement, limited by the detection efficiency of intracavity photons, is compared to the standard quantum limit imposed by the quantum properties of the laser probe light. The added noise of the measurement is seen to fall within a factor of 3 of the standard quantum limit, representing an order of magnitude improvement over previous experiments utilizing optomechanical crystals, and matching the performance of similar measurements in the microwave domain.

The next experiment uses single photon counting to detect individual phonon emission and absorption events within the nanomechanical oscillator. The scattering of laser light from mechanical motion produces correlated photon-phonon pairs, and detection of the emitted photon corresponds to an effective phonon counting scheme. In the process of scattering, the coherence properties of the mechanical oscillation are mapped onto the reflected light. Intensity interferometry of the reflected light then allows measurement of the temporal coherence of the acoustic field. These correlations are measured for a range of experimental conditions, including the optomechanical amplification of the mechanics to a self-oscillation regime, and comparisons are drawn to a laser system for phonons. Finally, prospects for using phonon counting and intensity interferometry to produce non-classical mechanical states are detailed following recent proposals in literature.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

在同成分LiTaO3熔体中掺入一定剂量的K2O,采用顶部籽晶提拉法生长掺镁近化学计量比LiTaO3晶体。对晶体分别进行光谱分析,畴结构和抗光损伤阈值的测定。结果表明:与同成分掺镁LiTaO3晶体相比较,其紫外吸收边出现明显蓝移,红外吸收峰变弱。腐蚀晶片的晶相显微镜观察结果表明:掺镁近化学剂量比晶体的畴结构是较为规则的六边形;晶体的抗光致散射能力明显提高。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

采用中频感应提拉法生长出尺寸为Ф60mm×110mm的Ce:Lu1.6Y0.4SiO5(LYSO)晶体,与LSO晶体相比,LYSO晶体的优势是提高了晶体质量、降低了熔点和原料成本等.在室温下测试了LYSO晶体的透过光谱、激发光谱和发射光谱,结果表明Y的加入使LSO晶体的吸收边向短波方向偏移.Ce^3+的4f^1→5d^1跃迁吸收导致紫外区产生三个吸收带.发射光谱具有Ce^3+典型的双峰特征,经Gaussian多峰值拟合,双峰395nm和418nm归属于Ce1发光中心,而435nm的发光峰与Ce2发光中心有

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, high optical quality cerium-doped lutetium pyrosilicate(LPS:Ce) crystal has been grown by Czochralski method with the seed oriented along cleavage plane (1 1 0). The structure, segregation coefficient of Ce3+ and optical characterization of LPS:Ce crystal have been compared with those of LSO:Ce crystal. The results show that LPS:Ce has the advantage over LSO:Ce by having a larger segregation coefficient of Ce3+, lower cost of starting material, lower melting point and only one luminescence mechanism. Thus, LPS:Ce crystal offers an attractive alternative to LSO:Ce for scintillator applications. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

采用中频感应提拉法生长出Ce:Lu:Si2O7(Ce:LPS)晶体.通过x射线粉末衍射分析,晶体结构属单斜晶系的C21m空间群·光学显微镜下可观测到晶体的(110)解理.在室温下测试了Ce:LPS晶体的吸收光谱、激发光谱和发射光谱。结果表明,Ce:LPS晶体的吸收峰只有两个,分别位于302和349nm,且与激发峰的位置一致,归因于Ce^3+的4f^1→5d^1跃迁的特征吸收所致.发射光谱具有Ce^3+典型的双峰特征,经Gaussian多峰值拟合,带状谱是由384和407nm两个发射峰叠加而成,且后者的强度