901 resultados para Numerical Approximation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Acoustic waveform inversions are an increasingly popular tool for extracting subsurface information from seismic data. They are computationally much more efficient than elastic inversions. Naturally, an inherent disadvantage is that any elastic effects present in the recorded data are ignored in acoustic inversions. We investigate the extent to which elastic effects influence seismic crosshole data. Our numerical modeling studies reveal that in the presence of high contrast interfaces, at which P-to-S conversions occur, elastic effects can dominate the seismic sections, even for experiments involving pressure sources and pressure receivers. Comparisons of waveform inversion results using a purely acoustic algorithm on synthetic data that is either acoustic or elastic, show that subsurface models comprising small low-to-medium contrast (?30%) structures can be successfully resolved in the acoustic approximation. However, in the presence of extended high-contrast anomalous bodies, P-to-S-conversions may substantially degrade the quality of the tomographic images. In particular, extended low-velocity zones are difficult to image. Likewise, relatively small low-velocity features are unresolved, even when advanced a priori information is included. One option for mitigating elastic effects is data windowing, which suppresses later arriving seismic arrivals, such as shear waves. Our tests of this approach found it to be inappropriate because elastic effects are also included in earlier arriving wavetrains. Furthermore, data windowing removes later arriving P-wave phases that may provide critical constraints on the tomograms. Finally, we investigated the extent to which acoustic inversions of elastic data are useful for time-lapse analyses of high contrast engineered structures, for which accurate reconstruction of the subsurface structure is not as critical as imaging differential changes between sequential experiments. Based on a realistic scenario for monitoring a radioactive waste repository, we demonstrated that acoustic inversions of elastic data yield substantial distortions of the tomograms and also unreliable information on trends in the velocity changes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Postprint (published version)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study biased, diffusive transport of Brownian particles through narrow, spatially periodic structures in which the motion is constrained in lateral directions. The problem is analyzed under the perspective of the Fick-Jacobs equation, which accounts for the effect of the lateral confinement by introducing an entropic barrier in a one-dimensional diffusion. The validity of this approximation, based on the assumption of an instantaneous equilibration of the particle distribution in the cross section of the structure, is analyzed by comparing the different time scales that characterize the problem. A validity criterion is established in terms of the shape of the structure and of the applied force. It is analytically corroborated and verified by numerical simulations that the critical value of the force up to which this description holds true scales as the square of the periodicity of the structure. The criterion can be visualized by means of a diagram representing the regions where the Fick-Jacobs description becomes inaccurate in terms of the scaled force versus the periodicity of the structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mixed convection on the flow past a heated length and past a porous cavity located in a horizontal wall bounding a saturated porous medium is numerically simulated. The cavity is heated from below. The steady-state regime is studied for several intensities of the buoyancy effects due to temperature variations. The influences of Péclet and Rayleigh numbers on the flow pattern and the temperature distributions are examined. Local and global Nusselt numbers are reported for the heated surface. The convective-diffusive fluxes at the volume boundaries are represented using the UNIFAES, Unified Finite Approach Exponential-type Scheme, with the Power-Law approximation to reduce the computing time. The conditions established by Rivas for the quadratic order of accuracy of the central differencing to be maintained in irregular grids are shown to be extensible to other quadratic schemes, including UNIFAES, so that accuracy estimates could be obtained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stochastic differential equation (SDE) is a differential equation in which some of the terms and its solution are stochastic processes. SDEs play a central role in modeling physical systems like finance, Biology, Engineering, to mention some. In modeling process, the computation of the trajectories (sample paths) of solutions to SDEs is very important. However, the exact solution to a SDE is generally difficult to obtain due to non-differentiability character of realizations of the Brownian motion. There exist approximation methods of solutions of SDE. The solutions will be continuous stochastic processes that represent diffusive dynamics, a common modeling assumption for financial, Biology, physical, environmental systems. This Masters' thesis is an introduction and survey of numerical solution methods for stochastic differential equations. Standard numerical methods, local linearization methods and filtering methods are well described. We compute the root mean square errors for each method from which we propose a better numerical scheme. Stochastic differential equations can be formulated from a given ordinary differential equations. In this thesis, we describe two kind of formulations: parametric and non-parametric techniques. The formulation is based on epidemiological SEIR model. This methods have a tendency of increasing parameters in the constructed SDEs, hence, it requires more data. We compare the two techniques numerically.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Expressions for the anharmonic Helmholtz free energy contributions up to o( f ) ,valid for all temperatures, have been obtained using perturbation theory for a c r ystal in which every atom is on a site of inversion symmetry. Numerical calculations have been carried out in the high temperature limit and in the non-leading term approximation for a monatomic facecentred cubic crystal with nearest neighbour c entralforce interactions. The numbers obtained were seen to vary by a s much as 47% from thos e obtai.ned in the leading term approximati.on,indicating that the latter approximati on is not in general very good. The convergence to oct) of the perturbation series in the high temperature limit appears satisfactory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Second-rank tensor interactions, such as quadrupolar interactions between the spin- 1 deuterium nuclei and the electric field gradients created by chemical bonds, are affected by rapid random molecular motions that modulate the orientation of the molecule with respect to the external magnetic field. In biological and model membrane systems, where a distribution of dynamically averaged anisotropies (quadrupolar splittings, chemical shift anisotropies, etc.) is present and where, in addition, various parts of the sample may undergo a partial magnetic alignment, the numerical analysis of the resulting Nuclear Magnetic Resonance (NMR) spectra is a mathematically ill-posed problem. However, numerical methods (de-Pakeing, Tikhonov regularization) exist that allow for a simultaneous determination of both the anisotropy and orientational distributions. An additional complication arises when relaxation is taken into account. This work presents a method of obtaining the orientation dependence of the relaxation rates that can be used for the analysis of the molecular motions on a broad range of time scales. An arbitrary set of exponential decay rates is described by a three-term truncated Legendre polynomial expansion in the orientation dependence, as appropriate for a second-rank tensor interaction, and a linear approximation to the individual decay rates is made. Thus a severe numerical instability caused by the presence of noise in the experimental data is avoided. At the same time, enough flexibility in the inversion algorithm is retained to achieve a meaningful mapping from raw experimental data to a set of intermediate, model-free

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work presents detailed numerical calculations of the dielectrophoretic force in octupolar traps designed for single-cell trapping. A trap with eight planar electrodes is studied for spherical and ellipsoidal particles using an indirect implementation of the boundary element method (BEM). Multipolar approximations of orders one to three are compared with the full Maxwell stress tensor (MST) calculation of the electrical force on spherical particles. Ellipsoidal particles are also studied, but in their case only the dipolar approximation is available for comparison with the MST solution. The results show that the full MST calculation is only required in the study of non-spherical particles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider a finite element approximation of the sixth order nonlinear degenerate parabolic equation ut = ?.( b(u)? 2u), where generically b(u) := |u|? for any given ? ? (0,?). In addition to showing well-posedness of our approximation, we prove convergence in space dimensions d ? 3. Furthermore an iterative scheme for solving the resulting nonlinear discrete system is analysed. Finally some numerical experiments in one and two space dimensions are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new identification algorithm is introduced for the Hammerstein model consisting of a nonlinear static function followed by a linear dynamical model. The nonlinear static function is characterised by using the Bezier-Bernstein approximation. The identification method is based on a hybrid scheme including the applications of the inverse of de Casteljau's algorithm, the least squares algorithm and the Gauss-Newton algorithm subject to constraints. The related work and the extension of the proposed algorithm to multi-input multi-output systems are discussed. Numerical examples including systems with some hard nonlinearities are used to illustrate the efficacy of the proposed approach through comparisons with other approaches.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this article a simple and effective controller design is introduced for the Hammerstein systems that are identified based on observational input/output data. The nonlinear static function in the Hammerstein system is modelled using a B-spline neural network. The controller is composed by computing the inverse of the B-spline approximated nonlinear static function, and a linear pole assignment controller. The contribution of this article is the inverse of De Boor algorithm that computes the inverse efficiently. Mathematical analysis is provided to prove the convergence of the proposed algorithm. Numerical examples are utilised to demonstrate the efficacy of the proposed approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper examines the equilibrium phase behavior of thin diblock-copolymer films tethered to a spherical core, using numerical self-consistent field theory (SCFT). The computational cost of the calculation is greatly reduced by implementing the unit-cell approximation (UCA) routinely used in the study of bulk systems. This provides a tremendous reduction in computational time, permitting us to map out the phase behavior more extensively and allowing us to consider far larger particles. The main consequence of the UCA is that it omits packing frustration, but evidently the effect is minor for large particles. On the other hand, when the particles are small, the UCA calculation can be readily followed up with the full SCFT, the comparison to which conveniently allows one to quantitatively assess the effect of packing frustration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A three-point difference scheme recently proposed in Ref. 1 for the numerical solution of a class of linear, singularly perturbed, two-point boundary-value problems is investigated. The scheme is derived from a first-order approximation to the original problem with a small deviating argument. It is shown here that, in the limit, as the deviating argument tends to zero, the difference scheme converges to a one-sided approximation to the original singularly perturbed equation in conservation form. The limiting scheme is shown to be stable on any uniform grid. Therefore, no advantage arises from using the deviating argument, and the most accurate and efficient results are obtained with the deviation at its zero limit.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present paper we study the approximation of functions with bounded mixed derivatives by sparse tensor product polynomials in positive order tensor product Sobolev spaces. We introduce a new sparse polynomial approximation operator which exhibits optimal convergence properties in L2 and tensorized View the MathML source simultaneously on a standard k-dimensional cube. In the special case k=2 the suggested approximation operator is also optimal in L2 and tensorized H1 (without essential boundary conditions). This allows to construct an optimal sparse p-version FEM with sparse piecewise continuous polynomial splines, reducing the number of unknowns from O(p2), needed for the full tensor product computation, to View the MathML source, required for the suggested sparse technique, preserving the same optimal convergence rate in terms of p. We apply this result to an elliptic differential equation and an elliptic integral equation with random loading and compute the covariances of the solutions with View the MathML source unknowns. Several numerical examples support the theoretical estimates.