995 resultados para North-atlantic
Resumo:
In zooplankton copepod studies there is often the requirement to be able to identify the six copepodite developmental stages of different species, or to know their body dimensions. However, this information is not available for many species, or is dispersed through the literature. This guide gathers together both original and previously published information on morphology and measurements for the stages of twenty-six common North Atlantic copepod species and tabulates them in a standard format. For each species additional notes useful in their identification are also given.
Resumo:
The Continuous Plankton Recorder (CPR) survey has been used to characterize phytoplankton and zooplankton space-time dynamics in the North Sea since 1931 and in the North Atlantic since 1939. Phytoplankton biomass is assessed from these samples by visual assessment of the green color of the silk mesh, the Phytoplankton Color Index (PCI), and the total count of diatoms and dinoflagellates. Species with a frequency of occurrence greater than 1% in the samples are used as indicator species of the community. We investigated (1) long-term fluctuations of phytoplankton biomass, total diatoms, and total dinoflagellates; (2) geographical variation of patterns; (3) the relationship between phytoplankton and climate forcing in the North Atlantic CPR samples; (4) the relative contribution of diatoms and dinoflagellates to the PCI; and (5) the fluctuations of the dominant species over the period of survey to provide more information on the processes linking climate to changes in the phytoplankton community. As a result of the differences in microscopic analysis methods prior to 1958, our analyses were conducted for the period ranging from 1958 to 2002. The North Atlantic was divided into six regions identified through bathymetric criteria and separated along a North-South axis. Based on 12 monthly time series, we demonstrate increasing trends in PCI and total dinoflagellates and a decrease in total diatoms.
Resumo:
The main purpose of this paper is to provide the core description of the modelling exercise within the Shelf Edge Advection Mortality And Recruitment (SEAMAR) programme. An individual-based model (IBM) was developed for the prediction of year-to-year survival of the early life-history stages of mackerel (Scomber scombrus) in the eastern North Atlantic. The IBM is one of two components of the model system. The first component is a circulation model to provide physical input data for the IBM. The circulation model is a geographical variant of the HAMburg Shelf Ocean Model (HAMSOM). The second component is the IBM, which is an i-space configuration model in which large numbers of individuals are followed as discrete entities to simulate the transport, growth and mortality of mackerel eggs, larvae and post-larvae. Larval and post-larval growth is modelled as a function of length, temperature and food distribution; mortality is modelled as a function of length and absolute growth rate. Each particle is considered as a super-individual representing 10 super(6) eggs at the outset of the simulation, and then declining according to the mortality function. Simulations were carried out for the years 1998-2000. Results showed concentrations of particles at Porcupine Bank and the adjacent Irish shelf, along the Celtic Sea shelf-edge, and in the southern Bay of Biscay. High survival was observed only at Porcupine and the adjacent shelf areas, and, more patchily, around the coastal margin of Biscay. The low survival along the shelf-edge of the Celtic Sea was due to the consistently low estimates of food availability in that area.
Resumo:
Spawning temperature preferences for sardine (Sardina pilchardus) in the eastern North Atlantic were determined from field data. These were compared with climatological temperature cycles (1986-2002) derived from satellite data by geographical region, to predict spawning seasons. Optimum spawning temperatures were determined as 14.0-15.0oC from the English Channel to Portugal and 16.0–18.0oC for all north-west African regions. Spawning seasons were closely related to the general latitudinal trend of the annual temperature cycle, with modification by upwelling in the western Iberian and north-west African regions. Some differences between temperature-based spawning season predictions and field observations were related to variations in seasonal plankton production. Correlations in the annual time-series of favourable spawning temperatures suggested relatively strong linkages between the southern areas from Portugal to Senegal. There was no consistent relationship between annual variations in duration of temperature-predicted spawning seasons and observed field abundance of eggs.
Resumo:
Climatic oscillations as reflected in atmospheric modes such as the North Atlantic Oscillation (NAO) may be seen as a proxy for regulating forces in aquatic and terrestrial ecosystems. Our review highlights the variety of climate processes related to the NAO and the diversity in the type of ecological responses that different biological groups can display. Available evidence suggests that the NAO influences ecological dynamics in both marine and terrestrial systems, and its effects may be seen in variation at the individual, population and community levels. The ecological responses to the NAO encompass changes in timing of reproduction, population dynamics, abundance, spatial distribution and interspecific relationships such as competition and predator-prey relationships. This indicates that local responses to large-scale changes may be more subtle than previously suggested. We propose that the NAO effects may be classified as three types: direct, indirect and integrated. Such a classification will help the design and interpretation of analyses attempting to relate ecological changes to the NAO and, possibly, to climate in general.
Resumo:
Spatial patterns in pelagic biodiversity are the result of factors acting from a global to a local scale. The global patterns have been studied intensively using taxa such as foraminifera and euphausiids. However, these studies do not allow direct comparisons of neritic and oceanic regions or examination of relationships between local and regional patterns of pelagic diversity. Here we present a map of the diversity of calanoid copepods, a key planktonic group, summarising 40 yr of continuous monthly investigations in the North Atlantic and North Sea. The high number of samples (168 162) allowed mesoscale patterns in diversity to be detected for the first time at an ocean-basin level. Our results demonstrate pronounced local spatial variability in planktonic diversity and refine previous global studies at a lower resolution. They form a baseline at which long-term changes in planktonic diversity can be better assessed and ecosystem management plans implemented.
Resumo:
The strength of the North Atlantic Current (NAC) (based on sea-surface elevation sloped derived from altimeter data) is correlated with westerly winds (based on North Atlantic Oscillation [NAO] Index data over a nine year period [1992-2002] with 108 monthly values). The data time window includes the major change in climate forcing over the last 100 years (1995 to 1996). It is shown that the NAO Index can be used for early earning of system failure for the NAC. The correlation response or early warning time scale for western Europe and south England is six months. The decay scale for the NAC and Subtropical Gyre circulation is estimated as three years. Longer period altimeter elevation/circulation changes are discussed. The sea-surface temperature (SST) response of the North Sea to negative and positive NAO conditions is examined. The overall temperature response for the central North Sea to NAO index forcing, reflecting wind induced inflow, shelf circulation and local climate forcing, is similar to 5 months. In years with strong North Atlantic winter wind induced inflow, under marked NAO positive conditions, mean temperatures ( similar to 10.5 degree C) are about 1 degree C warmer than under negative conditions. In 1996 under extreme negative winter NAO conditions, the North Sea circulation stopped, conditions near the Dogger Bank became more continentally influenced and the winter (March) temperature fell to 3.1 degree C whereas in 1995 under NAO positive winter conditions the minimum temperature was 6.4 degree C (February). Seasonal advance of North Atlantic and North Sea temperature is derived in relation to temperature change. Temperature change and monthly NAO Index are discussed with respect to phytoplankton blooms, chlorophyll-a measurements, ocean colour data and the anomalous north-eastern Atlantic 2002 spring/summer bloom SeaWiFS chlorophyll concentrations.
Resumo:
The analysis of remotely sensed altimeter data and in situ measurements shows that ERS 2 radar can monitor the ocean permanent thermocline from space. The remotely sensed sea level anomaly data account for similar to 2/3 of the temperature variance or vertical displacement of isotherms at a depth of similar to 550 m in the Subtropical North Atlantic Ocean near 32.5 degree N. This depth corresponds closely to the region of maximum temperature gradient in the permanent thermocline where near semi-annual internal vertical displacements reach 200 to 300 m. The gradient of the altimeter sea level anomaly data correlates well with measured ocean currents to a depth of 750 m. It is shown that observations from space can account for similar to 3/4 of the variance of ocean currents measured in situ in the permanent thermocline over a 2-y period. The magnification of the permanent thermocline displacement with respect to the displacement of the sea surface was determined as - x650 and gives a measure of the ratio of barotropic to baroclinic decay scale of geostrophic current with depth. The overall results are used to interpret an eight year altimeter data tie series in the Subtropical North Atlantic at 32.5 degree N which shows a dominant wave or eddy period near 200 days, rather than semi-annual and increases in energy propagating westward in 1995 (west of 25 degree W). The effects of rapid North Atlantic Oscillation climate change on ocean circulation are discussed. The altimeter data for the Atlantic were Fourier analysed. It is shown how the annual and semi-annual components relate to the seasonal maximum cholorophyll-a SeaWiFS signal in tropical and equatorial regions due to the lifting of the thermocline caused by seasonally varying ocean currents forced by wind stress.
Resumo:
Structure and climate of the east North Atlantic are appraised within a framework of in situ measurement and altimeter remote sensing from 0 degree - 60 degree N. Long zonal expendable bathythermograph /conductivity-temperature-depth probe sections show repeating internal structure in the North Atlantic Ocean. Drogued buoys and subsurface floats give westward speeds for eddies and wavelike structure. Records from longterm current meter deployments give the periodicity of the repeating structure. Eddy and wave characteristics of period, size or wavelength, westward propagation speed, and mean currents are derived at 20 degree N, 26 degree N, 32.5 degree N, 36 degree N and 48 degree N from in situ measurements in the Atlantic Ocean. It is shown that ocean wave and eddy-like features measured in situ correlate with altimeter structure. Interior ocean wave crests or cold dome-like temperature structures are cyclonic and have negative surface altimeter anomalies; mesoscale internal wave troughs or warm structures are anticyclonic and have positive surface height anomalies. Along the Eastern Boundary, flows and temperature climate are examined in terms of sla and North Atlantic Oscillation (NAO) Index. Longterm changes in ocean climate and circulation are derived from sla data. It is shown that longterm changes from 1992 to 2002 in the North Atlantic Current and the Subtropical Gyre transport determined from sla data correlate with winter NAO Index such that maximum flow conditions occurred in 1995 and 2000. Minimum circulation conditions occurred between 1996-1998. Years of extreme negative winter NAO Index result in enhanced poleward flow along the Eastern Boundary and anomalous winter warming along the West European Continental Slope as was measured in 1990, 1996, 1998 and 2001.
Resumo:
A marked increase in global temperature over the last century was confirmed by the second Assessment Report of the Intergovernmental Panel on Climate Change. Here we report significant positive and negative linear trends from 1948 to 1995 in phytoplankton measured by the Continuous Plankton Recorder survey in the northeast Atlantic and North Sea that might reflect a response to changing climate on a timescale of decades. Spreading of unusually cold waters from the Arctic might have contributed to the decline in phytoplankton north of 59o N. Further south, phytoplankton season length and abundance seem to have increased.