982 resultados para North Atlantic Ocean


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Relatively little is known in detail about the locations of the early Pleistocene ice-sheets responsible for ice-rafted debris (IRD) inputs to the sub-polar North Atlantic Ocean during intensification of northern hemisphere glaciation (iNHG). To shed new light on this problem, we present the first combined in-depth analysis of IRD flux and geochemical provenance of individual sand-sized IRD deposited in the sub-polar North Atlantic Ocean during the earliest large amplitude Pleistocene glacial, marine isotope stage (MIS) 100 (~2.52 Ma), arguably the key glacial during iNHG. IRD provenance is assessed using laser ablation lead (Pb) isotope analyses of single feldspar grains. We find that the Pb-isotope composition (206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb) of individual ice-rafted (>150 µm) feldspars deposited at DSDP Site 611A, ODP Site 981 and IODP Site U1308 during MIS 100 records a shift from predominantly Archaean-aged circum-North Atlantic Ocean continental sources during early glacial ice-rafting events to dominantly Palaeozoic and Proterozoic-aged sources during full glacial conditions. The distribution of feldspars in Pb-Pb space for full glacial MIS 100 more closely resembles that documented for feldspars deposited at the centre of the last glacial IRD belt (at IODP/DSDP Site U1308/609) during ambient (non-Heinrich-event) ice-rafting episodes of MIS 2 (~23.8 ka) than that documented for MIS 5d (~106 ka). Comparison of our early Pleistocene and last glacial cycle datasets suggests that MIS 100 was characterised by abundant iceberg calving from large ice-sheets on multiple continents in the high northern latitudes (not just on Greenland).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Eight deep-sea sediment cores from the North Atlantic Ocean ranging from 31° to 72°N are studied to reconstruct the meridional gradients in surface hydrographic conditions during the interval of minimum ice volume within the last interglacial period. Using benthic foraminiferal ?18O measurements and estimates of Sea Surface Temperature (SST) and Sea Surface Salinity (SSS), we show that summer SSTs and SSSs decreased gradually during the interval of minimum ice volume at high-latitude sites (52°-72°N) whereas they were stable or increased during the same time period at low-latitude sites (31°-41°N). This increase in meridional gradients of SSTs and SSSs may have been due to changes in the latitudinal distribution of summer and annual-average insolation and associated oceanic and atmospheric feedbacks. These trends documented for the Eemian ice volume minimum period are similar to corresponding changes observed during the Holocene and may have had a similar origin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Radiolarians form a remarkable part of the fossil plankton for Cretaceous sediments of the North Atlantic. Selected sites with long-term sedimentary successions of deep facies were studied (ODP Leg 103 and DSDP Site 398 off northwest Spain and DSDP Site 603 off the east coast of the United States). Preservation of the radiolarian faunas is generally poor, and the faunal abundance and diversity reflect the diagenetic history of the host sediment rather than the original faunal productivity. Several exceptions include abundant and some well-preserved radiolarian faunas from lower Campanian, Cenomanian/Turonian boundary, upper Albian, lower Albian, and Barremian sediments. These increases in radiolarian abundance and preservation coincide with well-established Cretaceous oceanic events in the North Atlantic. Typical faunal associations of these sections are described, and faunal associations from the Cenomanian/Turonian Boundary Event are documented for the first time in the North Atlantic. The relationship of the radiolarian blooms with coeval oceanic events in the North Atlantic is also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Here we present a new, pan-North-Atlantic compilation of data on key mesozooplankton species, including the most important copepod, Calanus finmarchicus. Distributional data of eight representative zooplankton taxa, from recent (2000-2009) Continuous Plankton Recorder data, are presented, along with basin-scale data of the phytoplankton colour index. Then we present a compilation of data on C. finmarchicus, including observations of abundance, demography, egg production and female size, with accompanying data on temperature and chlorophyll. . This is a contribution by Canadian, European and US scientists and their institutions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plankton pump samples and plankton tows (size fractions between 0.04 mm and 1.01 mm) from the eastern North Atlantic Ocean contain the following shell- and skeleton-producing planktonic and nektonic organisms, which can be fossilized in the sediments: diatoms, radiolarians, foraminifers, pteropods, heteropods, larvae of benthic gastropods and bivalves, ostracods, and fish. The abundance of these components has been mapped quantitatively in the eastern North Atlantic surface waters in October - December 1971. More ash (after ignition of the organic matter, consisting mostly of these components) per cubic meter of water is found close to land masses (continents and islands) and above shallow submarine elevations than in the open ocean. Preferred biotops of planktonic diatoms in the region described are temperate shallow water and tropical coastal upwelling areas. Radiolarians rarely occur close to the continent, but are abundant in pelagic warm water masses, even near islands. Foraminifers are similar to the radiolarians, rarer in the coastal water mass of the continent than in the open ocean or off oceanic islands. Their abundance is highest outside the upwelling area off NW Africa. Molluscs generally outnumber planktonic foraminifers, implying that the carbonate cycle of the ocean might be influenced considerably by these animals. The molluscs include heteropods, pteropods, and larvae of benthic bivalves and gastropods. Larvae of benthic molluscs occur more frequently close to continental and island margins and above submarine shoals (in this case mostly guyots) than in the open ocean. Their size increases, but they decrease in number with increasing distance from their area of origin. Ostracods and fish have only been found in small numbers concentrated off NW Africa. All of the above-mentioned components occur in higher abundances in the surface water than in subsurface waters. They are closely related to the hydrography of the sampled water masses (here defined through temperature measurements). Relatively warm water masses of the southeastern branches of the Gulf Stream system transport subtropical and southern temperate species to the Bay of Biscay, relatively cool water masses of the Portugal and Canary Currents carry transitional faunal elements along the NW African coast southwards to tropical regions. These mix in the northwest African upwelling area with tropical faunal elements which are generally assumed to live in the subsurface water masses and which probably have been transported northwards to this area by a subsurface counter current. The faunas typical for tropical surface water masses are not only reduced due to the tongue of cool water extending southwards along the coast, but they are also removed from the coastal zone by the upwelling subsurface water masses carrying their own shell and skeleton assemblages. Tropical water masses contain much more shelland skeleton-producing plankters than subtropical and temperate ones. The climatic conditions found at different latitudes control the development and intensity of a separate continental coastal water mass with its own plankton assemblages. Extent of this water mass and steepness of gradients between the pelagic and coastal environment limit the occurrence of pelagic plankton close to the continental coast. A similar water mass in only weakly developed off oceanic islands.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Records of benthic foraminifera from North Atlantic DSDP Site 607 and Hole 610A indicate changes in deep water conditions through the middle to late Pliocene (3.15 to 2.85 Ma). Quantitative analyses of modem associations in the North Atlantic indicate that seven species, Fontbotia wuellerstorfi, Cibicidoides kullenbergi, Uvigerina peregrina, Nuttallides umboniferus, Melonis pompilioides, Globocassidulina subglobosa and Epistominella exigua are useful for paleoenvironmental interpretation. The western North Atlantic basin (Site 607) was occupied by North Atlantic Deep Water (NADW) until c. 2.88 Ma. At that time, N. umboniferus increased, indicating an influx of Southern Ocean Water (SOW). The eastern North Atlantic basin (Hole 610A) was occupied by a relatively warm water mass, possibly Northeastern Atlantic Deep Water (NEADW), through c. 2.94 Ma when SOW more strongly influenced the site. These interpretations are consistent with benthic delta18O and delta13C records from 607 and 610A (Raymo et al., 1992). The results presented in this paper suggest that the North Atlantic was strongly influenced by northern component deep water circulation until 2.90-2.95 Ma. After that there was a transition toward a glacially driven North Atlantic circulation more strongly influenced by SOW associated with the onset of Northern Hemisphere glaciation. The circulation change follows the last significant SST and atmospheric warming prior to c. 2.6 Ma.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The provenance of ice-rafted debris (IRD) deposited in the North Atlantic before, during, and after Heinrich event 2 has been determined through measuring the lead isotopic composition of single feldspar grains and multiple-grain composites from the larger than 150-µm size fraction, from cores from the eastern and western North Atlantic and from the Labrador Sea. Single-grain analyses are used to identify the specific continental sources of the IRD, whereas composite samples are used to assess the relative IRD contributions from different sources. All single grains from Heinrich layer 2 (H 2) as well as H 2 composites plot along a correlation line on a 207Pb/204Pb versus 206Pb/204Pb diagram characteristic of the Churchill province of the Canadian shield. This is yet another strong piece of evidence that this Heinrich event was dominated by a massive iceberg discharge of the Laurentide ice sheet lobe located over Hudson Bay. In contrast, single grains from the ambient glacial sediment (above and below H 2) have multiple sources: many of them also lie along the correlation line with H 2 grains, but many others have Pb signatures consistent with derivation from the Grenville province and the Appalachian range in North America and possibly from Scandinavia and Greenland. Composites from the ambient sediment generally lie well to the right of the H 2 reference line in agreement with the results of the single-grain analyses. The evidence provided by lead isotopes regarding the dominant role played by the Hudson Bay lobe of the Laurentide ice sheet in the development of the Heinrich events lends support to the binge/purge model advanced by MacAyeal [1993a, b] that invokes trapping of geothermal heat by the base of the icecap and subsequent basal melting as the mechanism that triggered the Heinrich events.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sea surface temperature and salinity estimates reconstructed using planktonic foraminiferal abundance and delta18O records from core SU90-03 (40°N, 32°W, 2475 m water depth) reveal large climatic fluctuations linked to major instabilities in Northern Hemisphere ice sheets over the last 150 000 years. Episodes of enhanced ice rafted detritus (IRD) input were accompanied by discrete temperature minima, representing coolings of between 4 and 8°C, and reductions in surface salinity of up to 2.5-3.5 per mil. Several additional cooling episodes of a similar magnitude were documented during intervals of low IRD input that appear to be synchronous, within the limits of dating, with ice rafting events spatially confined to higher latitudes. Accelerator mass spectrometer 14C dates for Heinrich events (H1 - 14.2 ka, H2 - 21.4 ka, H3 - 26.7 ka, H4 - 34.8 ka, H5 - 47.2 ka) obtained from core SU90-03 agree well with other published age estimates and suggest a contemporaneous pattern of climate change throughout the North Atlantic during the last glacial period. This interpretation is supported by a comparison of IRD and palaeotemperature records from DSDP site 609 and core SU90-03, which clearly shows that the major climatic fluctuations identified at high latitudes were transmitted toward the subtropics. However, 14C dates suggest that ice rafting episodes may be diachronous to some extent. The northward migration of the polar front after the H1 event at 40°N in the mid-Atlantic occurred at 14 ka, approximately 500 years earlier than along the Portuguese margin, where the southerly advection of polar waters persisted within eastern boundary current system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The onset of abundant ice-rafted debris (IRD) deposition in the Nordic Seas and subpolar North Atlantic Ocean 2.72 millions of years ago (Ma) is thought to record the Pliocene onset of major northern hemisphere glaciation (NHG) due to a synchronous advance of North American Laurentide, Scandinavian and Greenland ice-sheets to their marine calving margins during marine isotope stage (MIS) G6. Numerous marine and terrestrial records from the Nordic Seas region indicate that extensive ice sheets on Greenland and Scandinavia increased IRD inputs to these seas from 2.72 Ma. The timing of ice-sheet expansion on North America as tracked by IRD deposition in the subpolar North Atlantic Ocean, however, is less clear because both Europe and North America are potential sources for icebergs in this region. Moreover, cosmogenic-dating of terrestrial tills on North America indicate that the Laurentide Ice Sheet did not extend to ~39°N until 2.4 ±0.14 Ma, at least 180 ka after the onset of major IRD deposition at 2.72 Ma. To address this problem,we present the first detailed analysis of the geochemical provenance of individual sand-sized IRD deposited in the subpolar North Atlantic Ocean between MIS G6 and 100 (~2.72-2.52 Ma). IRD provenance is assessed using laser ablation lead (Pb) isotope analyses of single ice-rafted (>150 mm) feldspar grains. To track when an ice-rafting setting consistent with major NHG first occurred in the North Atlantic Ocean during the Pliocene intensification of NHG (iNHG), we investigate when the Pb-isotope composition (206Pb/204Pb, 207Pb/204Pb, 208Pb/204Pb) of feldspars deposited at DSDP Site 611 first resembles that determined for IRD deposited at this site during MIS 100, the oldest glacial for which there exists convincing evidence for widespread glaciation of North America. Whilst Quaternary-magnitude IRD fluxes exist at Site 611 during glacials from 2.72 Ma, we find that the provenance of this IRD is not constant. Instead, we find that the Pb isotope composition of IRD at our study site is not consistent with major NHG until MIS G2 (2.64 Ma). We hypothesise that IRD deposition in the North Atlantic Ocean prior to MIS G2 was dominated by iceberg calving from Greenland and Scandinavia. We further suggest that the grounding line of continental ice on Northeast America may not have extended onto the continental shelf and calved significant numbers of icebergs to the North Atlantic Ocean during glacials until 2.64 Ma.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Planktic foraminiferal assemblages vary in response to seasonal fluctuations of hydrographic properties, between water masses, and after periodical changes and episodic events (e.g. reproduction, storms). Distinct annual variability of the planktic foraminiferal flux is also known from sediment trap data. In this paper we discuss the short-term impacts on interannual flux rates based on data from opening-closing net hauls obtained between the ocean surface and 500 m water depth. Data were recorded during April, May, June, and August at around 47°N, 20°W (BIOTRANS) in 1988, 1989, 1990, 1992, 1993, and during May 1989 and 1992 at 57°N, 20-22°W. Species assemblages closely resemble each other when comparing the mixed layer fauna with the fauna of the upper 100 m and the upper 500 m of the water column. In addition, species assemblages >100 µm are almost indistinguishable from assemblages that are >125 µm in test size. The standing stock of planktic foraminifers at BIOTRANS can vary by more than one order of magnitude over different years; however, species assemblages may be similar when comparing corresponding seasons. Early summer assemblages (June) are distinctly different from late summer assemblages (August). Significant variations in the species composition during spring (April/May) are independent of the mixed layer depth. Spring assemblages are characterized by high numbers of Globigerinita glutinata. In particular, day-to-day variations of the number of specimens and in species composition may have the same order of magnitude as interannual variations. This appears to be independent of the reproduction cycle. Species assemblages at 47°N and 57°N are similar during spring, although surface water temperatures and salinities differ by up to 10°C and 0.7 (PSU). We suggest that the main factors controlling the planktic foraminiferal fauna are the trophic properties in the upper ocean productive layer. Planktic foraminiferal carbonate flux as calculated from assemblages reveals large seasonal variations, a quasi-annual periodicity in flux levels, and substantial differences in timing and magnitude of peak fluxes. At the BIOTRANS station, the average annual planktic foraminiferal CaCO3 fluxes at 100 and 500 m depth are estimated to be 22.4 and 10.0 g/m**2/yr, respectively.