929 resultados para Nonlinear model updating
Resumo:
The authors would like to express their gratitude to their supporters. Drs Jim Cousins, S.R. Uma and Ken Gledhill facilitated this research by providing access to GeoNet seismic data and structural building information. Piotr Omenzetter’s work within the Lloyd’s Register Foundation Centre for Safety and Reliability Engineering at the University of Aberdeen is supported by Lloyd’s Register Foundation. The Foundation helps to protect life and property by supporting engineering-related education, public engagement and the application of research.
Resumo:
The objective of this research was to investigate the effect of suspension parameters on dynamic load-sharing of longitudinal-connected air suspensions of a tri-axle semi-trailer. A novel nonlinear model of a multi-axle semi-trailer with longitudinal-connected air suspension was formulated based on fluid mechanics and thermodynamics and was validated through test results. The effects of suspension parameters on dynamic load-sharing and road-friendliness of the semi-trailer were analyzed. Simulation results indicate that the road-friendliness metric DLC (Dynamic Load Coefficient), is generally in accordance with the load-sharing metric - DLSC (Dynamic Load Sharing Coefficient). When the static height or static pressure increases, the DLSC optimization ratio declines monotonically. The effect of employing larger air lines and connectors on the DLSC optimization ratio gives varying results as road roughness increases and as driving speed increases. The results also indicate that if the air line diameter is always assumed to be larger than the connector diameter, the influence of air line diameter on load-sharing is more significant than that of the connector.
Resumo:
This paper presents two novel nonlinear models of u-shaped anti-roll tanks for ships, and their linearizations. In addition, a third simplified nonlinear model is presented. The models are derived using Lagrangian mechanics. This formulation not only simplifies the modeling process, but also allows one to obtain models that satisfy energy-related physical properties. The proposed nonlinear models and their linearizations are validated using model-scale experimental data. Unlike other models in the literature, the nonlinear models in this paper are valid for large roll amplitudes. Even at moderate roll angles, the nonlinear models have three orders of magnitude lower mean square error relative to experimental data than the linear models.
Resumo:
Suspended loads on UAVs can provide significant benefits to several applications in agriculture, law enforcement and construction. The load impact on the underlying system dynamics should not be neglected as significant feedback forces may be induced on the vehicle during certain flight manoeuvres. Much research has focused on standard multi-rotor position and attitude control with and without a slung load. However, predictive control schemes, such as Nonlinear Model Predictive Control (NMPC), have not yet been fully explored. To this end, we present software and flight system architecture to test controller for safe and precise operation of multi-rotors with heavy slung load in three dimensions.
Resumo:
Combining the philosophies of nonlinear model predictive control and approximate dynamic programming, a new suboptimal control design technique is presented in this paper, named as model predictive static programming (MPSP), which is applicable for finite-horizon nonlinear problems with terminal constraints. This technique is computationally efficient, and hence, can possibly be implemented online. The effectiveness of the proposed method is demonstrated by designing an ascent phase guidance scheme for a ballistic missile propelled by solid motors. A comparison study with a conventional gradient method shows that the MPSP solution is quite close to the optimal solution.
Resumo:
The robustness of multivariate calibration models, based on near infrared spectroscopy, for the assessment of total soluble solids (TSS) and dry matter (DM) of intact mandarin fruit (Citrus reticulata cv. Imperial) was assessed. TSS calibration model performance was validated in terms of prediction of populations of fruit not in the original population (different harvest days from a single tree, different harvest localities, different harvest seasons). Of these, calibration performance was most affected by validation across seasons (signal to noise statistic on root mean squared error of prediction of 3.8, compared with 20 and 13 for locality and harvest day, respectively). Procedures for sample selection from the validation population for addition to the calibration population (‘model updating’) were considered for both TSS and DM models. Random selection from the validation group worked as well as more sophisticated selection procedures, with approximately 20 samples required. Models that were developed using samples at a range of temperatures were robust in validation for TSS and DM.
Resumo:
The paper proposes a time scale separated partial integrated guidance and control of an interceptor for engaging high speed targets in the terminal phase. In this two loop design, the outer loop is an optimal control formulation based on nonlinear model predictive spread control philosophies. It gives the commanded pitch and yaw rates whereas necessary roll-rate command is generated from a roll-stabilization loop. The inner loop tracks the outer loop commands using the dynamicinversion philosophy. However, unlike conventional designs, in both the loops the Six degree of freedom (Six-DOF) interceptor model is used directly. This intelligent manipulation preserves the inherent time scale separation property between the translational and rotational dynamics, and hence overcomes the deficiency of current IGC designs, while preserving its benefits. Six-DOF simulation studies have been carried out accounting for three dimensional engagement geometry. Different comparison studies were also conducted to measure the performance of the algorithm.
Resumo:
The problem of time variant reliability analysis of existing structures subjected to stationary random dynamic excitations is considered. The study assumes that samples of dynamic response of the structure, under the action of external excitations, have been measured at a set of sparse points on the structure. The utilization of these measurements m in updating reliability models, postulated prior to making any measurements, is considered. This is achieved by using dynamic state estimation methods which combine results from Markov process theory and Bayes' theorem. The uncertainties present in measurements as well as in the postulated model for the structural behaviour are accounted for. The samples of external excitations are taken to emanate from known stochastic models and allowance is made for ability (or lack of it) to measure the applied excitations. The future reliability of the structure is modeled using expected structural response conditioned on all the measurements made. This expected response is shown to have a time varying mean and a random component that can be treated as being weakly stationary. For linear systems, an approximate analytical solution for the problem of reliability model updating is obtained by combining theories of discrete Kalman filter and level crossing statistics. For the case of nonlinear systems, the problem is tackled by combining particle filtering strategies with data based extreme value analysis. In all these studies, the governing stochastic differential equations are discretized using the strong forms of Ito-Taylor's discretization schemes. The possibility of using conditional simulation strategies, when applied external actions are measured, is also considered. The proposed procedures are exemplifiedmby considering the reliability analysis of a few low-dimensional dynamical systems based on synthetically generated measurement data. The performance of the procedures developed is also assessed based on a limited amount of pertinent Monte Carlo simulations. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
An extended Kalman filter based generalized state estimation approach is presented in this paper for accurately estimating the states of incoming high-speed targets such as ballistic missiles. A key advantage of this nine-state problem formulation is that it is very much generic and can capture spiraling as well as pure ballistic motion of targets without any change of the target model and the tuning parameters. A new nonlinear model predictive zero-effort-miss based guidance algorithm is also presented in this paper, in which both the zero-effort-miss as well as the time-to-go are predicted more accurately by first propagating the nonlinear target model (with estimated states) and zero-effort interceptor model simultaneously. This information is then used for computing the necessary lateral acceleration. Extensive six-degrees-of-freedom simulation experiments, which include noisy seeker measurements, a nonlinear dynamic inversion based autopilot for the interceptor along with appropriate actuator and sensor models and magnitude and rate saturation limits for the fin deflections, show that near-zero miss distance (i.e., hit-to-kill level performance) can be obtained when these two new techniques are applied together. Comparison studies with an augmented proportional navigation based guidance shows that the proposed model predictive guidance leads to a substantial amount of conservation in the control energy as well.
Resumo:
Cell adhesion, which is mediated by the receptor-ligand bonds, plays an essential role in various biological processes. Previous studies often described the force-extension relationship of receptor-ligand bond with linear assumption. However, the force-extension relationship of the bond is intrinsically nonlinear, which should have significant influence on the mechanical behavior of cell adhesion. In this work, a nonlinear mechanical model for cell adhesion is developed, and the adhesive strength was studied at various bond distributions. We find that the nonlinear mechanical behavior of the receptor-ligand bonds is crucial to the adhesive strength and stability. This nonlinear behavior allows more bonds to achieve large bond force simultaneously, and therefore the adhesive strength becomes less sensitive to the change of bond density at the outmost periphery of the adhesive area. In this way, the strength and stability of cell adhesion are soundly enhanced. The nonlinear model describes the cell detachment behavior better than the linear model. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Tension Leg Platform (TLP) is a typical compliant offshore structure for oil exploitation in deep water. Most of the existing mathematical models for analyzing the dynamic response of TLP are based on explicit or implicit assumptions that displacements (translations and rotations) are small magnitude. Herein a theoretical method for analyzing the nonlinear dynamic behavior of TLP with finite displacement is developed, in which multifold nonlinearities are taken into account, i.e. finite displacement, coupling of the six degrees of freedom, instantaneous position, instantaneous wet surface, free surface effects and viscous drag force. Using this theoretical model, we perform the numerical analysis of dynamic response of a representative TLP. The comparison between the degenerative linear solution of the proposed nonlinear model and the published one shows good agreements. Furthermore, numerical results are presented which illustrate that nonlinearities exert a distinct influence on the dynamic responses of the TLP.