973 resultados para Nonlinear feedback


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper investigates the local asymptotic stabilization of a very general class of instable autonomous nonlinear difference equations which are subject to perturbed dynamics which can have a different order than that of the nominal difference equation. In the general case, the controller consists of two combined parts, namely, the feedback nominal controller which stabilizes the nominal (i.e., perturbation-free) difference equation plus an incremental controller which completes the stabilization in the presence of perturbed or unmodeled dynamics in the uncontrolled difference equation. A stabilization variant consists of using a single controller to stabilize both the nominal difference equation and also the perturbed one under a small-type characterization of the perturbed dynamics. The study is based on Banach fixed point principle, and it is also valid with slight modification for the stabilization of unstable oscillatory solutions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For a hungry fruit fly, locating and landing on a fermenting fruit where it can feed, find mates, and lay eggs, is an essential and difficult task requiring the integration of both olfactory and visual cues. Understanding how flies accomplish this will help provide a comprehensive ethological context for the expanding knowledge of their neural circuits involved in processing olfaction and vision, as well as inspire novel engineering solutions for control and estimation in computationally limited robotic applications. In this thesis, I use novel high throughput methods to develop a detailed overview of how flies track odor plumes, land, and regulate flight speed. Finally, I provide an example of how these insights can be applied to robotic applications to simplify complicated estimation problems. To localize an odor source, flies exhibit three iterative, reflex-driven behaviors. Upon encountering an attractive plume, flies increase their flight speed and turn upwind using visual cues. After losing the plume, flies begin zigzagging crosswind, again using visual cues to control their heading. After sensing an attractive odor, flies become more attracted to small visual features, which increases their chances of finding the plume source. Their changes in heading are largely controlled by open-loop maneuvers called saccades, which they direct towards and away from visual features. If a fly decides to land on an object, it begins to decelerate so as to maintain a stereotypical ratio of expansion to retinal size. Once they reach a stereotypical distance from the target, flies extend their legs in preparation for touchdown. Although it is unclear what cues they use to trigger this behavior, previous studies have indicated that it is likely under visual control. In Chapter 3, I use a nonlinear control theoretic analysis and robotic testbed to propose a novel and putative mechanism for how a fly might visually estimate distance by actively decelerating according to a visual control law. Throughout these behaviors, a common theme is the visual control of flight speed. Using genetic tools I show that the neuromodulator octopamine plays an important role in regulating flight speed, and propose a neural circuit for how this controller might be implemented in the flies brain. Two general biological and engineering principles are evident across my experiments: (1) complex behaviors, such as foraging, can emerge from the interactions of simple independent sensory-motor modules; (2) flies control their behavior in such a way that simplifies complex estimation problems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An optimal feedback control of two-photon fluorescence in the Coumarin 515 ethanol solution excited by shaping femtosecond laser pulses based on genetic algorithm is demonstrated experimentally. The two-photon fluorescence intensity can be enhanced by similar to 20%. Second harmonic generation frequency-resolved optical gating traces indicate that the optimal laser pulses are positive chirp, which are in favor of the effective population transfer of two-photon transitions. The dependence of the two-photon fluorescence signal on the laser pulse chirp is investigated to validate the theoretical model for the effective population transfer of two-photon transitions. The experimental results appear the potential applications in nonlinear spectroscopy and molecular physics. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Jet noise reduction is an important goal within both commercial and military aviation. Although large-scale numerical simulations are now able to simultaneously compute turbulent jets and their radiated sound, lost-cost, physically-motivated models are needed to guide noise-reduction efforts. A particularly promising modeling approach centers around certain large-scale coherent structures, called wavepackets, that are observed in jets and their radiated sound. The typical approach to modeling wavepackets is to approximate them as linear modal solutions of the Euler or Navier-Stokes equations linearized about the long-time mean of the turbulent flow field. The near-field wavepackets obtained from these models show compelling agreement with those educed from experimental and simulation data for both subsonic and supersonic jets, but the acoustic radiation is severely under-predicted in the subsonic case. This thesis contributes to two aspects of these models. First, two new solution methods are developed that can be used to efficiently compute wavepackets and their acoustic radiation, reducing the computational cost of the model by more than an order of magnitude. The new techniques are spatial integration methods and constitute a well-posed, convergent alternative to the frequently used parabolized stability equations. Using concepts related to well-posed boundary conditions, the methods are formulated for general hyperbolic equations and thus have potential applications in many fields of physics and engineering. Second, the nonlinear and stochastic forcing of wavepackets is investigated with the goal of identifying and characterizing the missing dynamics responsible for the under-prediction of acoustic radiation by linear wavepacket models for subsonic jets. Specifically, we use ensembles of large-eddy-simulation flow and force data along with two data decomposition techniques to educe the actual nonlinear forcing experienced by wavepackets in a Mach 0.9 turbulent jet. Modes with high energy are extracted using proper orthogonal decomposition, while high gain modes are identified using a novel technique called empirical resolvent-mode decomposition. In contrast to the flow and acoustic fields, the forcing field is characterized by a lack of energetic coherent structures. Furthermore, the structures that do exist are largely uncorrelated with the acoustic field. Instead, the forces that most efficiently excite an acoustic response appear to take the form of random turbulent fluctuations, implying that direct feedback from nonlinear interactions amongst wavepackets is not an essential noise source mechanism. This suggests that the essential ingredients of sound generation in high Reynolds number jets are contained within the linearized Navier-Stokes operator rather than in the nonlinear forcing terms, a conclusion that has important implications for jet noise modeling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we survey some recent results on stabilization and disturbance attenuation for nonlinear systems using a dissipativity approach. After reviewing the basic dissipativity concept, we stress the connections between Lyapunov designs and the problem of achieving passivity by feedback. Focusing on physical models, we then illustrate how the design of stabilizing feedback can take advantage of the natural energy balance equation of the system. Here stabilization is viewed as the task of shaping the energy of the system to enforce a minimum at the desired equilibrium. Finally, we show the implications of dissipativity theory as an appropriate framework to study the nonlinear H∞ control problem. © 2002 EUCA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of bounded input perturbations on the stability of nonlinear globally asymptotically stable delay differential equations is analyzed. We investigate under which conditions global stability is preserved and if not, whether semi-global stabilization is possible by controlling the size or shape of the perturbation. These results are used to study the stabilization of partially linear cascade systems with partial state feedback.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This note analyzes the stabilizability properties of nonlinear cascades in which a nonminimum phase linear system is interconnected through its output to a Stable nonlinear system. It is shown that the instability of the zeros of the linear System can be traded with the stability of the nonlinear system up to a limit fixed by the growth properties of the cascade interconnection term. Below this limit, global stabilization is achieved by smooth static-state feedback. Beyond this limit, various examples illustrate that controllability of the cascade may be lost, making it impossible to achieve large regions of attractions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper analyzes the stabilizability properties of nonlinear cascades in which a nonminimum phase linear system is interconnected through its output to a stable nonlinear system. It is shown that the instability of the zeros of the linear system can be traded with the stability of the nonlinear system up to a limit fixed by the growth properties of the cascade interconnection term. Below this limit, global stabilization is achieved by smooth static state feedback. Beyond this limit, various examples illustrate that controllability of the cascade may be lost, making it impossible to achieve large regions of attractions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this book several streams of nonlinear control theory are merged and di- rected towards a constructive solution of the feedback stabilization problem. Analytic, geometric and asymptotic concepts are assembled as design tools for a wide variety of nonlinear phenomena and structures. Di®erential-geometric concepts reveal important structural properties of nonlinear systems, but al- low no margin for modeling errors. To overcome this de¯ciency, we combine them with analytic concepts of passivity, optimality and Lyapunov stability. In this way geometry serves as a guide for construction of design procedures, while analysis provides robustness tools which geometry lacks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Periodic feedback stabilization is a very natural solution to overcome the topological obstructions which may occur when one tries to asymptotically (locally) stabilize a (locally) controllable nonlinear system around an equilibrium point. The object of this paper is to give a simple geometric interpretation of this fact, to show that one obtains a weakened form of those obstructions when periodic feedback is used, and to illustrate the success of periodic feedback stabilization on a representative system which contains a drift.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this dissertation, we explore the use of pursuit interactions as a building block for collective behavior, primarily in the context of constant bearing (CB) cyclic pursuit. Pursuit phenomena are observed throughout the natural environment and also play an important role in technological contexts, such as missile-aircraft encounters and interactions between unmanned vehicles. While pursuit is typically regarded as adversarial, we demonstrate that pursuit interactions within a cyclic pursuit framework give rise to seemingly coordinated group maneuvers. We model a system of agents (e.g. birds, vehicles) as particles tracing out curves in the plane, and illustrate reduction to the shape space of relative positions and velocities. Introducing the CB pursuit strategy and associated pursuit law, we consider the case for which agent i pursues agent i+1 (modulo n) with the CB pursuit law. After deriving closed-loop cyclic pursuit dynamics, we demonstrate asymptotic convergence to an invariant submanifold (corresponding to each agent attaining the CB pursuit strategy), and proceed by analysis of the reduced dynamics restricted to the submanifold. For the general setting, we derive existence conditions for relative equilibria (circling and rectilinear) as well as for system trajectories which preserve the shape of the collective (up to similarity), which we refer to as pure shape equilibria. For two illustrative low-dimensional cases, we provide a more comprehensive analysis, deriving explicit trajectory solutions for the two-particle "mutual pursuit" case, and detailing the stability properties of three-particle relative equilibria and pure shape equilibria. For the three-particle case, we show that a particular choice of CB pursuit parameters gives rise to remarkable almost-periodic trajectories in the physical space. We also extend our study to consider CB pursuit in three dimensions, deriving a feedback law for executing the CB pursuit strategy, and providing a detailed analysis of the two-particle mutual pursuit case. We complete the work by considering evasive strategies to counter the motion camouflage (MC) pursuit law. After demonstrating that a stochastically steering evader is unable to thwart the MC pursuit strategy, we propose a (deterministic) feedback law for the evader and demonstrate the existence of circling equilibria for the closed-loop pursuer-evader dynamics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nonlinear dynamics of laser systems has become an interesting area of research in recent times. Lasers are good examples of nonlinear dissipative systems showing many kinds of nonlinear phenomena such as chaos, multistability and quasiperiodicity. The study of these phenomena in lasers has fundamental scientific importance since the investigations on these effects reveal many interesting features of nonlinear effects in practical systems. Further, the understanding of the instabilities in lasers is helpful in detecting and controlling such effects. Chaos is one of the most interesting phenomena shown by nonlinear deterministic systems. It is found that, like many nonlinear dissipative systems, lasers also show chaos for certain ranges of parameters. Many investigations on laser chaos have been done in the last two decades. The earlier studies in this field were concentrated on the dynamical aspects of laser chaos. However, recent developments in this area mainly belong to the control and synchronization of chaos. A number of attempts have been reported in controlling or suppressing chaos in lasers since lasers are the practical systems aimed to operated in stable or periodic mode. On the other hand, laser chaos has been found to be applicable in high speed secure communication based on synchronization of chaos. Thus, chaos in laser systems has technological importance also. Semiconductor lasers are most applicable in the fields of optical communications among various kinds of laser due to many reasons such as their compactness, reliability modest cost and the opportunity of direct current modulation. They show chaos and other instabilities under various physical conditions such as direct modulation and optical or optoelectronic feedback. It is desirable for semiconductor lasers to have stable and regular operation. Thus, the understanding of chaos and other instabilities in semiconductor lasers and their xi control is highly important in photonics. We address the problem of controlling chaos produced by direct modulation of laser diodes. We consider the delay feedback control methods for this purpose and study their performance using numerical simulation. Besides the control of chaos, control of other nonlinear effects such as quasiperiodicity and bistability using delay feedback methods are also investigated. A number of secure communication schemes based on synchronization of chaos semiconductor lasers have been successfully demonstrated theoretically and experimentally. The current investigations in these field include the study of practical issues on the implementations of such encryption schemes. We theoretically study the issues such as channel delay, phase mismatch and frequency detuning on the synchronization of chaos in directly modulated laser diodes. It would be helpful for designing and implementing chaotic encryption schemes using synchronization of chaos in modulated semiconductor laser

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis presents analytical and numerical results from studies based on the multiple quantum well laser rate equation model. We address the problem of controlling chaos produced by direct modulation of laser diodes. We consider the delay feedback control methods for this purpose and study their performance using numerical simulation. Besides the control of chaos, control of other nonlinear effects such as quasiperiodicity and bistability using delay feedback methods are also investigated.A number of secure communication schemes based on synchronization of chaos semiconductor lasers have been successfully demonstrated theoretically and experimentally. The current investigations in these field include the study of practical issues on the implementations of such encryption schemes. We theoretically study the issues such as channel delay, phase mismatch and frequency detuning on the synchronization of chaos in directly modulated laser diodes. It would be helpful for designing and implementing chaotic encryption schemes using synchronization of chaos in modulated semiconductor lasers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The chaotic dynamics of directly modulated semiconductor lasers with delayed optoelectronic feedback is studied numerically. The effects of positive and negative delayed optoelectronic feedback in producing chaotic outputs from such lasers with nonlinear gain reduction in its optimum value range is investigated using bifurcation diagrams. The results are confirmed by calculating the Lyapunov exponents. A negative delayed optoelectronic feedback configuration is found to be more effective in inducing chaotic dynamics to such systems with nonlinear gain reduction factor in the practical value range.