924 resultados para Non-cystic fibrosis bronchiectasis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Pseudomonas aeruginosa is the most common bacterial pathogen in patients with cystic fibrosis (CF). Current infection control guidelines aim to prevent transmission via contact and respiratory droplet routes and do not consider the possibility of airborne transmission. It was hypothesised that subjects with CF produce viable respirable bacterial aerosols with coughing.

METHODS: A cross-sectional study was undertaken of 15 children and 13 adults with CF, 26 chronically infected with P aeruginosa. A cough aerosol sampling system enabled fractioning of respiratory particles of different sizes and culture of viable Gram-negative non-fermentative bacteria. Cough aerosols were collected during 5 min of voluntary coughing and during a sputum induction procedure when tolerated. Standardised quantitative culture and genotyping techniques were used.

RESULTS: P aeruginosa was isolated in cough aerosols of 25 subjects (89%), 22 of whom produced sputum samples. P aeruginosa from sputum and paired cough aerosols were indistinguishable by molecular typing. In four cases the same genotype was isolated from ambient room air. Approximately 70% of viable aerosols collected during voluntary coughing were of particles <or=3.3 microm aerodynamic diameter. P aeruginosa, Burkholderia cenocepacia, Stenotrophomonas maltophilia and Achromobacter xylosoxidans were cultivated from respiratory particles in this size range. Positive room air samples were associated with high total counts in cough aerosols (p = 0.003). The magnitude of cough aerosols was associated with higher forced expiratory volume in 1 s (r = 0.45, p = 0.02) and higher quantitative sputum culture results (r = 0.58, p = 0.008).

CONCLUSION: During coughing, patients with CF produce viable aerosols of P aeruginosa and other Gram-negative bacteria of respirable size range, suggesting the potential for airborne transmission.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, a combination of recA-based PCR assays and 16S rDNA restriction fragment length polymorphism (RFLP) analysis was used to determine the genomovar diversity of clinical Burkholderia cepacia complex isolates. Twenty-eight isolates were prospectively collected from patients attending a large Australian adult cystic fibrosis (CF) unit, 22 isolates were referred from other Australian CF units and a further eight isolates originated from patients without CF. The 28 prospectively collected isolates were distributed amongst the following genomovars: Burkholderia cepacia genomovar I (28.6%), Burkholderia multivorans (21.4%), Burkholderia cepacia genomovar III (39.3%), Burkholderia vietnamiensis(3.6%) and Burkholderia ambifaria (7.1%). The results of this study highlight the usefulness of 16S rDNA RFLP typing for the identification of other Burkholderia spp. and non-fermenting gram-negative bacteria.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cystic fibrosis (CF) is a lifelong, inflammatory multi-organ disease and the most common lethal, genetic condition in Caucasian populations, with a median survival rate of 41.5 years. Pulmonary disease, characterized by infective exacerbations, bronchiectasis and increasing airway insufficiency is the most serious manifestation of this disease process, currently responsible for over 80% of CF deaths. Chronic dysregulation of the innate immune and host inflammatory response has been proposed as a mechanism central to this genetic condition, primarily driven by the nuclear factor κB (NF-κB) pathway. Chronic activation of this transcription factor complex leads to the production of pro-inflammatory cytokines and mediators such as IL-6, IL-8 and TNF-α. A20 has been described as a central and inducible negative regulator of NF-κB. This intracellular molecule negatively regulates NF-κB-driven pro-inflammatory signalling upon toll-like receptor activation at the level of TRAF6 activation. Silencing of A20 increases cellular levels of p65 and induces a pro-inflammatory state. We have previously shown that A20 expression positively correlates with lung function (FEV1%) in CF. Despite improvement in survival rates in recent years, advancements in available therapies have been incremental. We demonstrate that the experimental use of naturally occurring plant diterpenes such as gibberellin on lipopolysaccharide-stimulated cell lines reduces IL-8 release in an A20-dependent manner. We discuss how the use of a novel bio-informatics gene expression connectivity-mapping technique to identify small molecule compounds that similarly mimic the action of A20 may lead to the development of new therapeutic approaches capable of reducing chronic airway inflammation in CF. 

Relevância:

100.00% 100.00%

Publicador:

Resumo:

RATIONALE: Anaerobic bacteria are present in large numbers in the airways of people with cystic fibrosis (PWCF). In the gut, anaerobes produce short-chain fatty acids (SCFAs) that modulate immune/inflammatory processes.

OBJECTIVES: To investigate the capacity of anaerobes to contribute to CF airway pathogenesis via SCFAs.

METHODS: Samples from 109 PWCF were processed using anaerobic microbiological culture with bacteria present identified by 16S RNA sequencing. SCFAs levels in anaerobe supernatants and bronchoalveolar lavage (BAL) were determined by gas chromatography. The mRNA and/or protein expression of SCFAs receptors, GPR41 and GPR43, in CF and non-CF bronchial brushings, and 16HBE14o- and CFBE41o- cells were evaluated using RT-PCR, western blot, laser scanning cytometry and confocal microscopy. SCFAs-induced IL-8 secretion was monitored by ELISA.

MEASUREMENTS AND MAIN RESULTS: Fifty seven of 109 (52.3%) PWCF were anaerobe-positive. Prevalence increased with age, from 33.3% to 57.7% in PWCF under (n=24) and over 6 years (n=85). All evaluated anaerobes produced millimolar concentrations of SCFAs, including acetic, propionic and butyric acid. SCFAs levels were higher in BAL samples from adults than children. GPR41 levels were elevated in; CFBE41o- versus 16HBE14o- cells; CF versus non-CF bronchial brushings; 16HBE14o- cells after treatment with CFTR inhibitor CFTR(inh)-172, CF BAL, or inducers of endoplasmic reticulum stress. SCFAs induced a dose-dependent and pertussis toxin-sensitive IL-8 response in bronchial epithelial cells with a higher production of IL-8 in CFBE41o- than 16HBE14o- cells.

CONCLUSIONS: This study illustrates that SCFAs contribute to excessive production of IL-8 in CF airways colonized with anaerobes via upregulated GPR41.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: RSV causes considerable morbidity and mortality in children. In cystic fibrosis (CF) viral infections are associated with worsening respiratory symptoms and bacterial colonization. Palivizumab is effective in reducing RSV hospitalization in high risk patient groups. Evidence regarding its effectiveness and safety in CF is inconclusive. CF screening in N. Ireland enabled timely palivizumab prophylaxis, becoming routine in 2002.

OBJECTIVES: To determine the effect of palivizumab on RSV-related hospitalization and compare lung function and bacterial colonization at age 6 years for those born pre- and post-introduction of palivizumab prophylaxis.

METHODS: A retrospective audit was conducted for all patients diagnosed with CF during the period from 1997 to 2007 inclusive. RSV-related hospitalization, time to Pseudomonas aeruginosa (PA) 1st isolate, lung function and growth parameters were recorded. Comparisons were made for outcomes pre- and post-introduction of routine palivizumab administration in 2002. A cost evaluation was also performed.

RESULTS: Ninety-two children were included; 47 pre- and 45 post-palivizumab introduction. The overall RSV-positive hospitalization rate was 13%. The relative risk of RSV infection in palivizumab non-recipients versus recipients was 4.78 (95%CI: 1.1-20.7), P = 0.027. Notably, PA 1st isolate was significantly earlier in the palivizumab recipient cohort versus non-recipient cohort (median 57 vs. 96 months, P < 0.025) with a relative risk of 2.5. Chronic PA infection at 6 years remained low in both groups, with similar lung function and growth parameters. Total costs were calculated at £96,127 ($151,880) for the non-recipient cohort versus £137,954 ($217,967) for the recipient cohort.

CONCLUSION: Palivizumab was effective in reducing RSV-related hospitalization infection in CF patients. Surprisingly, we found a significantly earlier time to 1st isolate of PA in palivizumab recipients which we could not explain by altered or improved diagnostic tests. 

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background - Aspergillus respiratory infection is a common complication in cystic fibrosis (CF) and is associated with loss of pulmonary function and allergic disease. Methods - Fifty-three Aspergillus isolates recovered from CF patients were identified to species by Internal Transcribed Spacer Region (ITS), β-tubulin, and calmodulin sequencing. Results - Three species complexes (Terrei, Nigri, and Fumigati) were found. Identification to species level gave a single Aspergillus terreus sensu stricto, one Aspergillus niger sensu stricto and 51 Aspergillus fumigatus sensu stricto isolates. No cryptic species were found. Conclusions - To our knowledge, this is the first prospective study of Aspergillus species in CF using molecular methods. The paucity of non-A. fumigatus and of cryptic species of A. fumigatus suggests a special association of A. fumigatus sensu stricto with CF airways, indicating it likely displays unique characteristics making it suitable for chronic residence in that milieu. These findings could refine an epidemiologic and therapeutic approach geared to this pathogen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

RATIONALE: Allergic bronchopulmonary aspergillosis (ABPA) is characterized by a Th2 immune response. Mouse models suggest a critical role for the Th2 chemokines thymus- and activation-regulated chemokine (TARC) and macrophage-derived chemokine (MDC) in ABPA. OBJECTIVES: To determine whether serum levels of TARC and MDC characterize ABPA in patients with cystic fibrosis (CF) and to examine longitudinally if levels of TARC and MDC indicate ABPA exacerbations in patients with CF. METHODS: Levels of TARC and MDC and levels of Th1 (IL-12 and IFN-gamma) and Th2 (IL-4, IL-5, and IL-13) cytokines were analyzed in serum of 16 patients with CF with ABPA, six non-CF patients with asthma with ABPA, 13 patients with CF colonized with Aspergillus fumigatus, six patients with CF sensitized to A. fumigatus, 12 atopic patients with CF, and 13 non-CF atopic control subjects by ELISA. The longitudinal course of TARC, MDC, and IgE levels was assessed during ABPA episodes. RESULTS: Patients with ABPA had significantly higher serum levels of TARC compared with the other patient groups. Cytokine levels did not differ among the patient groups. Longitudinally, levels of TARC indicated ABPA exacerbations in patients with CF more clearly than IgE levels. In patients with CF and ABPA, levels of TARC correlated positively with specific IgE to A. fumigatus and rAsp f4. CONCLUSIONS: Serum levels of TARC differentiate patients with CF or patients with asthma with ABPA from patients with CF colonized with or sensitized to A. fumigatus, atopic patients with CF, and atopic control subjects. Longitudinally, levels of TARC indicate ABPA exacerbations, suggesting TARC as a marker for identification and monitoring of ABPA in patients with CF.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The diagnosis of allergic bronchopulmonary aspergillosis (ABPA) in cystic fibrosis (CF) is a challenge. Thymus- and activation-regulated chemokine (TARC) has recently been reported to play a role in ABPA. The aim of this study was to compare the diagnostic value of TARC with that of known serological markers for diagnosis of ABPA in CF patients. The present study longitudinally followed 48 CF patients, of whom 12 had a diagnosis of ABPA according to Nelson's criteria, for 1-8 yrs with repeated measurements of serum total immunoglobulin (Ig)E, specific Aspergillus fumigatus IgE and IgG, specific IgE against recombinant A. fumigatus allergens (rAsp f) 1, 3, 4 and 6, and TARC. Median (interquartile range) TARC levels were 589 (465-673) pg x mL(-1) in ABPA patients and 232 (189-289) pg x mL(-1) in non-ABPA patients. Receiver operating characteristic curves revealed that TARC was superior to the other markers for diagnosis of ABPA. Diagnostic accuracy was greater for TARC (93%) than for total IgE (74%), or rAsp f 4 (75%) or f 6 (79%). The present study indicates that thymus- and activation-regulated chemokine may be useful in the diagnosis of allergic bronchopulmonary aspergillosis in cystic fibrosis patients. However, larger studies are needed before thymus- and activation-regulated chemokine can routinely be used in diagnostic algorithms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Determination of chloride concentration in sweat is the current diagnostic gold standard for Cystic Fibrosis (CF). Nanoduct(R) is a new analyzing system measuring conductivity which requires only 3 microliters of sweat and gives results within 30 minutes. The aim of the study was to evaluate the applicability of this system in a clinical setting of three children's hospitals and borderline results were compared with sweat chloride concentration. Over 3 years, 1,041 subjects were tested and in 946 diagnostic results were obtained. In 95 children, Nanoduct(R) failed (9.1% failure rate), mainly due to failures in preterm babies and newborns. Assuming 59 mmol/L as an upper limit of normal conductivity, all our 46 CF patients were correctly diagnosed (sensitivity 100%, 95% CI: 93.1-100; negative predicted value 100% (95% CI: 99.6-100) and only 39 non CF's were false positive (39/900, 4.3%; specificity 95.7%, 95%CI: 94.2-96.9, positive predicted value 54.1% with a 95%CI: 43.4-65.0). Increasing the diagnostic limit to 80 mmol/L, the rate fell to 0.3% (3/900). CF patients had a median conductivity of 115 mmol/L; the non-CF a median of 37 mmol/L. In conclusion, the Nanoduct(R) test is a reliable diagnostic tool for CF diagnosis: It has a failure rate comparable to other sweat tests and can be used as a simple bedside test for fast and reliable exclusion, diagnosis or suspicion of CF. In cases with borderline conductivity (60-80 mmol/L) other additional methods (determination of chloride and genotyping) are indicated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this study was to investigate the contribution of cystic fibrosis transmembrane conductance regulator (CFTR) to human infertility and to define screening and counselling procedures for couples asking for assisted reproduction treatment. Extended CFTR mutation screening was performed in 310 infertile men (25 with congenital absence of the vas deferens (CAVD), 116 with non-CAVD azoospermia, 169 with severe oligospermia), 70 female partners and 96 healthy controls. CFTR mutations were detected in the majority (68%) of CAVD patients and in significant proportions in azoospermic (31%) and oligospermic (22%) men. Carrier frequency among partners of infertile men was 16/70, exceeding that of controls (6/96) significantly (P = 0.0005). Thus, in 23% of infertile couples both partners were carriers, increasing the risk for their offspring to inherit two mutations to 25% or 50%. This study emphasizes the necessity to offer extended CFTR mutation screening and counselling not only to patients with CAVD but also to azoospermic and oligozoospermic men and their partners before undergoing assisted reproduction techniques. The identification of rare and/or mild mutations will not be a reason to abstain from parenthood, but will allow adequate treatment in children at risk for atypical or mild cystic fibrosis as soon as they develop any symptoms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Cystic fibrosis (CF) lung disease starts in the first months of life often before the onset of clinical symptoms. Multiple breath washout (MBW) detects abnormal lung function in infants and young children in the laboratory setting. OBJECTIVE The aim of this study was to determine the feasibility of MBW in 0- to 4-year-old children with CF and non-CF controls in the clinical setting. METHODS Fourteen children with CF (mean age 1.3 ± 1.0 years) and 26 age-matched non-CF controls were sedated with chloral hydrate and MBW was performed with sulfur hexafluoride. RESULTS MBW measurements were successful in 27 of 40 children (67.5%). The mean lung clearance index (LCI) was significantly higher in CF patients compared to non-CF controls (p = 0.006). Further, the frequency of elevated LCI (z-score >1.96) was significantly increased in CF patients compared to controls (p = 0.0003). CONCLUSIONS We conclude that MBW is feasible and sensitive to detect abnormal lung function in infants and young children with CF in the clinical setting.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Protease IV is important in the pathogenesis of Pseudomonas aeruginosa-induced microbial keratitis, but little is known of its role in cystic fibrosis (CF) lung infection. In this study protease IV production was examined in 43 P. aeruginosa isolates (24 non-clonal and 19 clonal) from the lungs of chronically infected adult patients attending the Royal Prince Alfred Hospital CF Clinic, Sydney, Australia. Overall, 32/43 (74 %) isolates were positive for protease IV protein by Western blotting and 22/43 (51 %) had evidence of active protease IV on gelatin zymography. Clonal strains were 1.6 times more likely than non-clonal strains to produce protease IV [18/19 (95 %) versus 14/24 (58 %), RR=1.6, CI 1.1–2.3, P=0.007] and 3 times more likely to secrete the protein [16/19 (84 %) versus 6/24 (25 %), RR=3.4, CI 1.6–6.9, P

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Oral itraconazole (ITRA) is used for the treatment of allergic bronchopulmonary aspergillosis in patients with cystic fibrosis (CF) because of its antifungal activity against Aspergillus species. ITRA has an active hydroxy-metabolite (OH-ITRA) which has similar antifungal activity. ITRA is a highly lipophilic drug which is available in two different oral formulations, a capsule and an oral solution. It is reported that the oral solution has a 60% higher relative bioavailability. The influence of altered gastric physiology associated with CF on the pharmacokinetics (PK) of ITRA and its metabolite has not been previously evaluated. Objectives: 1) To estimate the population (pop) PK parameters for ITRA and its active metabolite OH-ITRA including relative bioavailability of the parent after administration of the parent by both capsule and solution and 2) to assess the performance of the optimal design. Methods: The study was a cross-over design in which 30 patients received the capsule on the first occasion and 3 days later the solution formulation. The design was constrained to have a maximum of 4 blood samples per occasion for estimation of the popPK of both ITRA and OH-ITRA. The sampling times for the population model were optimized previously using POPT v.2.0.[1] POPT is a series of applications that run under MATLAB and provide an evaluation of the information matrix for a nonlinear mixed effects model given a particular design. In addition it can be used to optimize the design based on evaluation of the determinant of the information matrix. The model details for the design were based on prior information obtained from the literature, which suggested that ITRA may have either linear or non-linear elimination. The optimal sampling times were evaluated to provide information for both competing models for the parent and metabolite and for both capsule and solution simultaneously. Blood samples were assayed by validated HPLC.[2] PopPK modelling was performed using FOCE with interaction under NONMEM, version 5 (level 1.1; GloboMax LLC, Hanover, MD, USA). The PK of ITRA and OH‑ITRA was modelled simultaneously using ADVAN 5. Subsequently three methods were assessed for modelling concentrations less than the LOD (limit of detection). These methods (corresponding to methods 5, 6 & 4 from Beal[3], respectively) were (a) where all values less than LOD were assigned to half of LOD, (b) where the closest missing value that is less than LOD was assigned to half the LOD and all previous (if during absorption) or subsequent (if during elimination) missing samples were deleted, and (c) where the contribution of the expectation of each missing concentration to the likelihood is estimated. The LOD was 0.04 mg/L. The final model evaluation was performed via bootstrap with re-sampling and a visual predictive check. The optimal design and the sampling windows of the study were evaluated for execution errors and for agreement between the observed and predicted standard errors. Dosing regimens were simulated for the capsules and the oral solution to assess their ability to achieve ITRA target trough concentration (Cmin,ss of 0.5-2 mg/L) or a combined Cmin,ss for ITRA and OH-ITRA above 1.5mg/L. Results and Discussion: A total of 241 blood samples were collected and analysed, 94% of them were taken within the defined optimal sampling windows, of which 31% where taken within 5 min of the exact optimal times. Forty six per cent of the ITRA values and 28% of the OH-ITRA values were below LOD. The entire profile after administration of the capsule for five patients was below LOD and therefore the data from this occasion was omitted from estimation. A 2-compartment model with 1st order absorption and elimination best described ITRA PK, with 1st order metabolism of the parent to OH-ITRA. For ITRA the clearance (ClItra/F) was 31.5 L/h; apparent volumes of central and peripheral compartments were 56.7 L and 2090 L, respectively. Absorption rate constants for capsule (kacap) and solution (kasol) were 0.0315 h-1 and 0.125 h-1, respectively. Comparative bioavailability of the capsule was 0.82. There was no evidence of nonlinearity in the popPK of ITRA. No screened covariate significantly improved the fit to the data. The results of the parameter estimates from the final model were comparable between the different methods for accounting for missing data, (M4,5,6)[3] and provided similar parameter estimates. The prospective application of an optimal design was found to be successful. Due to the sampling windows, most of the samples could be collected within the daily hospital routine, but still at times that were near optimal for estimating the popPK parameters. The final model was one of the potential competing models considered in the original design. The asymptotic standard errors provided by NONMEM for the final model and empirical values from bootstrap were similar in magnitude to those predicted from the Fisher Information matrix associated with the D-optimal design. Simulations from the final model showed that the current dosing regimen of 200 mg twice daily (bd) would provide a target Cmin,ss (0.5-2 mg/L) for only 35% of patients when administered as the solution and 31% when administered as capsules. The optimal dosing schedule was 500mg bd for both formulations. The target success for this dosing regimen was 87% for the solution with an NNT=4 compared to capsules. This means, for every 4 patients treated with the solution one additional patient will achieve a target success compared to capsule but at an additional cost of AUD $220 per day. The therapeutic target however is still doubtful and potential risks of these dosing schedules need to be assessed on an individual basis. Conclusion: A model was developed which described the popPK of ITRA and its main active metabolite OH-ITRA in adult CF after administration of both capsule and solution. The relative bioavailability of ITRA from the capsule was 82% that of the solution, but considerably more variable. To incorporate missing data, using the simple Beal method 5 (using half LOD for all samples below LOD) provided comparable results to the more complex but theoretically better Beal method 4 (integration method). The optimal sparse design performed well for estimation of model parameters and provided a good fit to the data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cystic fibrosis (CF) is the most common lethal inherited disease among Caucasians and arises due to mutations in a chloride channel, called cystic fibrosis transmembrane conductance regulator. A hallmark of this disease is the chronic bacterial infection of the airways, which is usually, associated with pathogens such as Pseudomonas aeruginosa, S. aureus and recently becoming more prominent, B. cepacia. The excessive inflammatory response, which leads to irreversible lung damage, will in the long term lead to mortality of the patient at around the age of 40 years. Understanding the pathogenesis of CF currently relies on animal models, such as those employing genetically-modified mice, and on single cell culture models, which are grown either as polarised or non-polarised epithelium in vitro. Whilst these approaches partially enable the study of disease progression in CF, both types of models have inherent limitations. The overall aim of this thesis was to establish a multicellular co-culture model of normal and CF human airways in vitro, which helps to partially overcome these limitations and permits analysis of cell-to-cell communication in the airways. These models could then be used to examine the co-ordinated response of the airways to infection with relevant pathogens in order to validate this approach over animals/single cell models. Therefore epithelial cell lines of non-CF and CF background were employed in a co-culture model together with human pulmonary fibroblasts. Co-cultures were grown on collagen-coated permeable supports at air-liquid interface to promote epithelial cell differentiation. The models were characterised and essential features for investigating CF infections and inflammatory responses were investigated and analysed. A pseudostratified like epithelial cell layer was established at air liquid interface (ALI) of mono-and co-cultures and cell layer integrity was verified by tight junction (TJ) staining and transepithelial resistance measurements (TER). Mono- and co-cultures were also found to secrete the airway mucin MUC5AC. Influence of bacterial infections was found to be most challenging when intact S. aureus, B. cepacia and P. aeruginosa were used. CF mono- and co-cultures were found to mimic the hyperinflammatory state found in CF, which was confirmed by analysing IL-8 secretions of these models. These co-culture models will help to elucidate the role fibroblasts play in the inflammatory response to bacteria and will provide a useful testing platform to further investigate the dysregulated airway responses seen in CF.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Mouse models of cystic fibrosis (CF) fail to truly represent the respiratory pathology. We have consequently developed human airways cell culture models to address this. The impact of cigarette smoke within the CF population is well documented, with exposure being known to worsen lung function. As nicotine is often perceived to be a less harmful component of tobacco smoke, this research aimed to identify its effects upon viability and inflammatory responses of CF (IB3-1) and CF phenotype corrected (C38) bronchial epithelial cells. Methods: IB3-1 and C38 cell lines were exposed to increasing concentrations of nicotine (0.55-75μM) for 24 hours. Cell viability was assessed via Cell Titre Blue and the inflammatory response with IL-6 and IL-8 ELISA. Results: CF cells were more sensitive; nicotine significantly (P<0.05) reduced cell viability at all concentrations tested, but failed to have a marked effect on C38 viability. Whilst nicotine induced anti-inflammatory effects in CF cells with a significant reduction in IL-6 and IL-8 release, it had no effect on chemokine release by C38 cells. Conclusion: CF cells may be more vulnerable to inhaled toxicants than non-CF cells. As mice lack a number of human nicotinic receptor subunits and fail to mimic the characteristic pathology of CF, these data emphasise the importance of employing relevant human cell lines to study a human-specific disease.