992 resultados para Non-binary arithmetic
Resumo:
Studies show the positive effects that video games can have on student performance and attitude towards learning. In the past few years, strategies have been generated to optimize the use of technological resources with the aim of facilitating widespread adoption of technology in the classroom. Given its low acquisition and maintenance costs, the interpersonal computer allows individual interaction and simultaneous learning with large groups of students. The purpose of this work was to compare arithmetical knowledge acquired by third-grade students through the use of game-based activities and non-game-based activities using an interpersonal computer, with knowledge acquired through the use of traditional paper-and-pencil activities, and to analyze their impact in various socio-cultural contexts. To do this, a quasi-experimental study was conducted with 271 students in three different countries (Brazil, Chile, and Costa Rica), in both rural and urban schools. A set of educational games for practising arithmetic was developed and tested in six schools within these three countries. Results show that there were no significant differences (ANCOVA) in the learning acquired from game-based vs. non-game-based activities. However, both showed a significant difference when compared with the traditional method. Additionally, both groups using the interpersonal computer showed higher levels of student interest than the traditional method group, and these technological methods were seen to be especially effective in increasing learning among weaker students.
Resumo:
V393 Scorpii is a double periodic variable characterized by a relatively stable non-orbital photometric cycle of 253 d. Mennickent et al. argue for the presence of a massive optically thick disc around the more massive B-type component and describe the evolutionary stage of the system. In this paper, we analyse the behaviour of the main spectroscopic optical lines during the long non-orbital photometric cycle. We study the radial velocity of the donor determining its orbital elements and find a small but significant orbital eccentricity (e = 0.04). The donor spectral features are modelled and removed from the spectrum at every observing epoch using the light-curve model given by Mennickent et al. We find that the line emission is larger during eclipses and mostly comes from a bipolar wind. We also find that the long cycle is explained in terms of a modulation of the wind strength; the wind has a larger line and continuum emissivity at the high state. We report the discovery of highly variable chromospheric emission in the donor, as revealed by the Doppler maps of the emission lines Mg II 4481 and C I 6588. We discuss notable and some novel spectroscopic features like discrete absorption components, especially visible at blue depressed O I 7773 absorption wings during the second half-cycle, Balmer double emission with V/R curves showing 'Z-type' and 'S-type' excursions around secondary and main eclipses, respectively, and H beta emission wings extending up to +/- 2000 km s(-1). We also discuss possible causes for these phenomena and for their modulations with the long cycle.
Resumo:
Information on the solvation in mixtures of water, W, and the ionic liquids, ILs, 1-allyl-3-R-imidazolium chlorides; R = methyl, 1-butyl, and 1-hexyl, has been obtained from the responses of the following solvatochromic probes: 2,6-dibromo-4-[(E)-2-(1-R-pyridinium-4-yl)ethenyl] phenolate, R = methyl, MePMBr2; 1-octyl, OcPMBr(2), and the corresponding quinolinium derivative, MeQMBr(2). A model developed for solvation in binary mixtures of W and molecular solvents has been extended to the present mixtures. Our objective is to assess the relevance to solvation of hydrogen-bonding and the hydrophobic character of the IL and the solvatochromic probe. Plots of the medium empirical polarity, E-T(probe) versus its composition revealed non-ideal behavior, attributed to preferential solvation by the IL and, more efficiently, by the IL-W hydrogen-bonded complex. The deviation from linearity increases as a function of increasing number of carbon atoms in the alkyl group of the IL, and is larger than that observed for solvation by W plus molecular solvents (1-propanol and 2-(1-butoxy)ethanol) that are more hydrophobic than the ILs investigated. This enhanced deviation is attributed to the more organized structure of the ILs proper, which persists in their aqueous solutions. MeQMBr(2) is more susceptible to solvent lipophilicity than OcPMBr(2), although the former probe is less lipophilic. This enhanced susceptibility agrees with the important effect of annelation on the contributions of the quinonoid and zwitterionic limiting structures to the ground and excited states of the probe, hence on its response to both medium composition and lipophilicity of the IL.
Resumo:
Millisecond Pulsars (MSPs) are fast rotating, highly magnetized neutron stars. According to the "canonical recycling scenario", MSPs form in binary systems containing a neutron star which is spun up through mass accretion from the evolving companion. Therefore, the final stage consists of a binary made of a MSP and the core of the deeply peeled companion. In the last years, however an increasing number of systems deviating from these expectations has been discovered, thus strongly indicating that our understanding of MSPs is far to be complete. The identification of the optical companions to binary MSPs is crucial to constrain the formation and evolution of these objects. In dense environments such as Globular Clusters (GCs), it also allows us to get insights on the cluster internal dynamics. By using deep photometric data, acquired both from space and ground-based telescopes, we identified 5 new companions to MSPs. Three of them being located in GCs and two in the Galactic Field. The three new identifications in GCs increased by 50% the number of such objects known before this Thesis. They all are non-degenerate stars, at odds with the expectations of the "canonical recycling scenario". These results therefore suggest either that transitory phases should also be taken into account, or that dynamical processes, as exchange interactions, play a crucial role in the evolution of MSPs. We also performed a spectroscopic follow-up of the companion to PSRJ1740-5340A in the GC NGC 6397, confirming that it is a deeply peeled star descending from a ~0.8Msun progenitor. This nicely confirms the theoretical expectations about the formation and evolution of MSPs.
Resumo:
We consider inference in randomized studies, in which repeatedly measured outcomes may be informatively missing due to drop out. In this setting, it is well known that full data estimands are not identified unless unverified assumptions are imposed. We assume a non-future dependence model for the drop-out mechanism and posit an exponential tilt model that links non-identifiable and identifiable distributions. This model is indexed by non-identified parameters, which are assumed to have an informative prior distribution, elicited from subject-matter experts. Under this model, full data estimands are shown to be expressed as functionals of the distribution of the observed data. To avoid the curse of dimensionality, we model the distribution of the observed data using a Bayesian shrinkage model. In a simulation study, we compare our approach to a fully parametric and a fully saturated model for the distribution of the observed data. Our methodology is motivated and applied to data from the Breast Cancer Prevention Trial.
Resumo:
The use of non-heart-beating donor (NHBD) lungs may help to overcome the shortage of lung grafts in clinical lung transplantation, but warm ischaemia and ischaemia/reperfusion injury (I/R injury) resulting in primary graft dysfunction represent a considerable threat. Thus, better strategies for optimized preservation of lung grafts are urgently needed. Surfactant dysfunction has been shown to contribute to I/R injury, and surfactant replacement therapy is effective in enhancing lung function and structural integrity in related rat models. In the present study we hypothesize that surfactant replacement therapy reduces oedema formation in a pig model of NHBD lung transplantation. Oedema formation was quantified with (SF) and without (non-SF) surfactant replacement therapy in interstitial and alveolar compartments by means of design-based stereology in NHBD lungs 7 h after cardiac arrest, reperfusion and transplantation. A sham-operated group served as control. In both NHBD groups, nearly all animals died within the first hours after transplantation due to right heart failure. Both SF and non-SF developed an interstitial oedema of similar degree, as shown by an increase in septal wall volume and arithmetic mean thickness as well as an increase in the volume of peribron-chovascular connective tissue. Regarding intra-alveolar oedema, no statistically significant difference could be found between SF and non-SF. In conclusion, surfactant replacement therapy cannot prevent poor outcome after prolonged warm ischaemia of 7 h in this model. While the beneficial effects of surfactant replacement therapy have been observed in several experimental and clinical studies related to heart-beating donor lungs and cold ischaemia, it is unlikely that surfactant replacement therapy will overcome the shortage of organs in the context of prolonged warm ischaemia, for example, 7 h. Moreover, our data demonstrate that right heart function and dysfunctions of the pulmonary vascular bed are limiting factors that need to be addressed in NHBD.
Resumo:
El interés cada vez mayor por las redes de sensores inalámbricos pueden ser entendido simplemente pensando en lo que esencialmente son: un gran número de pequeños nodos sensores autoalimentados que recogen información o detectan eventos especiales y se comunican de manera inalámbrica, con el objetivo final de entregar sus datos procesados a una estación base. Los nodos sensores están densamente desplegados dentro del área de interés, se pueden desplegar al azar y tienen capacidad de cooperación. Por lo general, estos dispositivos son pequeños y de bajo costo, de modo que pueden ser producidos y desplegados en gran numero aunque sus recursos en términos de energía, memoria, velocidad de cálculo y ancho de banda están enormemente limitados. Detección, tratamiento y comunicación son tres elementos clave cuya combinación en un pequeño dispositivo permite lograr un gran número de aplicaciones. Las redes de sensores proporcionan oportunidades sin fin, pero al mismo tiempo plantean retos formidables, tales como lograr el máximo rendimiento de una energía que es escasa y por lo general un recurso no renovable. Sin embargo, los recientes avances en la integración a gran escala, integrado de hardware de computación, comunicaciones, y en general, la convergencia de la informática y las comunicaciones, están haciendo de esta tecnología emergente una realidad. Del mismo modo, los avances en la nanotecnología están empezando a hacer que todo gire entorno a las redes de pequeños sensores y actuadores distribuidos. Hay diferentes tipos de sensores tales como sensores de presión, acelerómetros, cámaras, sensores térmicos o un simple micrófono. Supervisan las condiciones presentes en diferentes lugares tales como la temperatura, humedad, el movimiento, la luminosidad, presión, composición del suelo, los niveles de ruido, la presencia o ausencia de ciertos tipos de objetos, los niveles de tensión mecánica sobre objetos adheridos y las características momentáneas tales como la velocidad , la dirección y el tamaño de un objeto, etc. Se comprobara el estado de las Redes Inalámbricas de Sensores y se revisaran los protocolos más famosos. Así mismo, se examinara la identificación por radiofrecuencia (RFID) ya que se está convirtiendo en algo actual y su presencia importante. La RFID tiene un papel crucial que desempeñar en el futuro en el mundo de los negocios y los individuos por igual. El impacto mundial que ha tenido la identificación sin cables está ejerciendo fuertes presiones en la tecnología RFID, los servicios de investigación y desarrollo, desarrollo de normas, el cumplimiento de la seguridad y la privacidad y muchos más. Su potencial económico se ha demostrado en algunos países mientras que otros están simplemente en etapas de planificación o en etapas piloto, pero aun tiene que afianzarse o desarrollarse a través de la modernización de los modelos de negocio y aplicaciones para poder tener un mayor impacto en la sociedad. Las posibles aplicaciones de redes de sensores son de interés para la mayoría de campos. La monitorización ambiental, la guerra, la educación infantil, la vigilancia, la micro-cirugía y la agricultura son solo unos pocos ejemplos de los muchísimos campos en los que tienen cabida las redes mencionadas anteriormente. Estados Unidos de América es probablemente el país que más ha investigado en esta área por lo que veremos muchas soluciones propuestas provenientes de ese país. Universidades como Berkeley, UCLA (Universidad de California, Los Ángeles) Harvard y empresas como Intel lideran dichas investigaciones. Pero no solo EE.UU. usa e investiga las redes de sensores inalámbricos. La Universidad de Southampton, por ejemplo, está desarrollando una tecnología para monitorear el comportamiento de los glaciares mediante redes de sensores que contribuyen a la investigación fundamental en glaciología y de las redes de sensores inalámbricos. Así mismo, Coalesenses GmbH (Alemania) y Zurich ETH están trabajando en diversas aplicaciones para redes de sensores inalámbricos en numerosas áreas. Una solución española será la elegida para ser examinada más a fondo por ser innovadora, adaptable y polivalente. Este estudio del sensor se ha centrado principalmente en aplicaciones de tráfico, pero no se puede olvidar la lista de más de 50 aplicaciones diferentes que ha sido publicada por la firma creadora de este sensor específico. En la actualidad hay muchas tecnologías de vigilancia de vehículos, incluidos los sensores de bucle, cámaras de video, sensores de imagen, sensores infrarrojos, radares de microondas, GPS, etc. El rendimiento es aceptable, pero no suficiente, debido a su limitada cobertura y caros costos de implementación y mantenimiento, especialmente este ultimo. Tienen defectos tales como: línea de visión, baja exactitud, dependen mucho del ambiente y del clima, no se puede realizar trabajos de mantenimiento sin interrumpir las mediciones, la noche puede condicionar muchos de ellos, tienen altos costos de instalación y mantenimiento, etc. Por consiguiente, en las aplicaciones reales de circulación, los datos recibidos son insuficientes o malos en términos de tiempo real debido al escaso número de detectores y su costo. Con el aumento de vehículos en las redes viales urbanas las tecnologías de detección de vehículos se enfrentan a nuevas exigencias. Las redes de sensores inalámbricos son actualmente una de las tecnologías más avanzadas y una revolución en la detección de información remota y en las aplicaciones de recogida. Las perspectivas de aplicación en el sistema inteligente de transporte son muy amplias. Con este fin se ha desarrollado un programa de localización de objetivos y recuento utilizando una red de sensores binarios. Esto permite que el sensor necesite mucha menos energía durante la transmisión de información y que los dispositivos sean más independientes con el fin de tener un mejor control de tráfico. La aplicación se centra en la eficacia de la colaboración de los sensores en el seguimiento más que en los protocolos de comunicación utilizados por los nodos sensores. Las operaciones de salida y retorno en las vacaciones son un buen ejemplo de por qué es necesario llevar la cuenta de los coches en las carreteras. Para ello se ha desarrollado una simulación en Matlab con el objetivo localizar objetivos y contarlos con una red de sensores binarios. Dicho programa se podría implementar en el sensor que Libelium, la empresa creadora del sensor que se examinara concienzudamente, ha desarrollado. Esto permitiría que el aparato necesitase mucha menos energía durante la transmisión de información y los dispositivos sean más independientes. Los prometedores resultados obtenidos indican que los sensores de proximidad binarios pueden formar la base de una arquitectura robusta para la vigilancia de áreas amplias y para el seguimiento de objetivos. Cuando el movimiento de dichos objetivos es suficientemente suave, no tiene cambios bruscos de trayectoria, el algoritmo ClusterTrack proporciona un rendimiento excelente en términos de identificación y seguimiento de trayectorias los objetos designados como blancos. Este algoritmo podría, por supuesto, ser utilizado para numerosas aplicaciones y se podría seguir esta línea de trabajo para futuras investigaciones. No es sorprendente que las redes de sensores de binarios de proximidad hayan atraído mucha atención últimamente ya que, a pesar de la información mínima de un sensor de proximidad binario proporciona, las redes de este tipo pueden realizar un seguimiento de todo tipo de objetivos con la precisión suficiente. Abstract The increasing interest in wireless sensor networks can be promptly understood simply by thinking about what they essentially are: a large number of small sensing self-powered nodes which gather information or detect special events and communicate in a wireless fashion, with the end goal of handing their processed data to a base station. The sensor nodes are densely deployed inside the phenomenon, they deploy random and have cooperative capabilities. Usually these devices are small and inexpensive, so that they can be produced and deployed in large numbers, and so their resources in terms of energy, memory, computational speed and bandwidth are severely constrained. Sensing, processing and communication are three key elements whose combination in one tiny device gives rise to a vast number of applications. Sensor networks provide endless opportunities, but at the same time pose formidable challenges, such as the fact that energy is a scarce and usually non-renewable resource. However, recent advances in low power Very Large Scale Integration, embedded computing, communication hardware, and in general, the convergence of computing and communications, are making this emerging technology a reality. Likewise, advances in nanotechnology and Micro Electro-Mechanical Systems are pushing toward networks of tiny distributed sensors and actuators. There are different sensors such as pressure, accelerometer, camera, thermal, and microphone. They monitor conditions at different locations, such as temperature, humidity, vehicular movement, lightning condition, pressure, soil makeup, noise levels, the presence or absence of certain kinds of objects, mechanical stress levels on attached objects, the current characteristics such as speed, direction and size of an object, etc. The state of Wireless Sensor Networks will be checked and the most famous protocols reviewed. As Radio Frequency Identification (RFID) is becoming extremely present and important nowadays, it will be examined as well. RFID has a crucial role to play in business and for individuals alike going forward. The impact of ‘wireless’ identification is exerting strong pressures in RFID technology and services research and development, standards development, security compliance and privacy, and many more. The economic value is proven in some countries while others are just on the verge of planning or in pilot stages, but the wider spread of usage has yet to take hold or unfold through the modernisation of business models and applications. Possible applications of sensor networks are of interest to the most diverse fields. Environmental monitoring, warfare, child education, surveillance, micro-surgery, and agriculture are only a few examples. Some real hardware applications in the United States of America will be checked as it is probably the country that has investigated most in this area. Universities like Berkeley, UCLA (University of California, Los Angeles) Harvard and enterprises such as Intel are leading those investigations. But not just USA has been using and investigating wireless sensor networks. University of Southampton e.g. is to develop technology to monitor glacier behaviour using sensor networks contributing to fundamental research in glaciology and wireless sensor networks. Coalesenses GmbH (Germany) and ETH Zurich are working in applying wireless sensor networks in many different areas too. A Spanish solution will be the one examined more thoroughly for being innovative, adaptable and multipurpose. This study of the sensor has been focused mainly to traffic applications but it cannot be forgotten the more than 50 different application compilation that has been published by this specific sensor’s firm. Currently there are many vehicle surveillance technologies including loop sensors, video cameras, image sensors, infrared sensors, microwave radar, GPS, etc. The performance is acceptable but not sufficient because of their limited coverage and expensive costs of implementation and maintenance, specially the last one. They have defects such as: line-ofsight, low exactness, depending on environment and weather, cannot perform no-stop work whether daytime or night, high costs for installation and maintenance, etc. Consequently, in actual traffic applications the received data is insufficient or bad in terms of real-time owed to detector quantity and cost. With the increase of vehicle in urban road networks, the vehicle detection technologies are confronted with new requirements. Wireless sensor network is the state of the art technology and a revolution in remote information sensing and collection applications. It has broad prospect of application in intelligent transportation system. An application for target tracking and counting using a network of binary sensors has been developed. This would allow the appliance to spend much less energy when transmitting information and to make more independent devices in order to have a better traffic control. The application is focused on the efficacy of collaborative tracking rather than on the communication protocols used by the sensor nodes. Holiday crowds are a good case in which it is necessary to keep count of the cars on the roads. To this end a Matlab simulation has been produced for target tracking and counting using a network of binary sensors that e.g. could be implemented in Libelium’s solution. Libelium is the enterprise that has developed the sensor that will be deeply examined. This would allow the appliance to spend much less energy when transmitting information and to make more independent devices. The promising results obtained indicate that binary proximity sensors can form the basis for a robust architecture for wide area surveillance and tracking. When the target paths are smooth enough ClusterTrack particle filter algorithm gives excellent performance in terms of identifying and tracking different target trajectories. This algorithm could, of course, be used for different applications and that could be done in future researches. It is not surprising that binary proximity sensor networks have attracted a lot of attention lately. Despite the minimal information a binary proximity sensor provides, networks of these sensing modalities can track all kinds of different targets classes accurate enough.
Resumo:
We provide a method whereby, given mode and (upper approximation) type information, we can detect procedures and goals that can be guaranteed to not fail (i.e., to produce at least one solution or not termínate). The technique is based on an intuitively very simple notion, that of a (set of) tests "covering" the type of a set of variables. We show that the problem of determining a covering is undecidable in general, and give decidability and complexity results for the Herbrand and linear arithmetic constraint systems. We give sound algorithms for determining covering that are precise and efiicient in practice. Based on this information, we show how to identify goals and procedures that can be guaranteed to not fail at runtime. Applications of such non-failure information include programming error detection, program transiormations and parallel execution optimization, avoiding speculative parallelism and estimating lower bounds on the computational costs of goals, which can be used for granularity control. Finally, we report on an implementation of our method and show that better results are obtained than with previously proposed approaches.
Resumo:
Algebraic topology (homology) is used to analyze the state of spiral defect chaos in both laboratory experiments and numerical simulations of Rayleigh-Bénard convection. The analysis reveals topological asymmetries that arise when non-Boussinesq effects are present. The asymmetries are found in different flow fields in the simulations and are robust to substantial alterations to flow visualization conditions in the experiment. However, the asymmetries are not observable using conventional statistical measures. These results suggest homology may provide a new and general approach for connecting spatiotemporal observations of chaotic or turbulent patterns to theoretical models.
Resumo:
Only a few binary systems with compact objects display TeV emission. The physical properties of the companion stars represent basic input for understanding the physical mechanisms behind the particle acceleration, emission, and absorption processes in these so-called gamma-ray binaries. Here we present high-resolution and high signal-to-noise optical spectra of LS 2883, the Be star forming a gamma-ray binary with the young non-accreting pulsar PSR B1259-63, showing it to rotate faster and be significantly earlier and more luminous than previously thought. Analysis of the interstellar lines suggests that the system is located at the same distance as (and thus is likely a member of) Cen OB1. Taking the distance to the association, d = 2.3 kpc, and a color excess of E(B – V) = 0.85 for LS 2883 results in MV ≈ –4.4. Because of fast rotation, LS 2883 is oblate (R eq sime 9.7 R ☉ and R pole sime 8.1 R ☉) and presents a temperature gradient (T eq≈ 27,500 K, log g eq = 3.7; T pole≈ 34,000 K, log g pole = 4.1). If the star did not rotate, it would have parameters corresponding to a late O-type star. We estimate its luminosity at log(L */L ☉) sime 4.79 and its mass at M * ≈ 30 M ☉. The mass function then implies an inclination of the binary system i orb ≈ 23°, slightly smaller than previous estimates. We discuss the implications of these new astrophysical parameters of LS 2883 for the production of high-energy and very high-energy gamma rays in the PSR B1259-63/LS 2883 gamma-ray binary system. In particular, the stellar properties are very important for prediction of the line-like bulk Comptonization component from the unshocked ultrarelativistic pulsar wind.
Resumo:
Context. There is growing evidence that a treatment of binarity amongst OB stars is essential for a full theory of stellar evolution. However the binary properties of massive stars – frequency, mass ratio & orbital separation – are still poorly constrained. Aims. In order to address this shortcoming we have undertaken a multiepoch spectroscopic study of the stellar population of the young massive cluster Westerlund 1. In this paper we present an investigation into the nature of the dusty Wolf-Rayet star and candidate binary W239. Methods. To accomplish this we have utilised our spectroscopic data in conjunction with multi-year optical and near-IR photometric observations in order to search for binary signatures. Comparison of these data to synthetic non-LTE model atmosphere spectra were used to derive the fundamental properties of the WC9 primary. Results. We found W239 to have an orbital period of only ~5.05 days, making it one of the most compact WC binaries yet identified. Analysis of the long term near-IR lightcurve reveals a significant flare between 2004-6. We interpret this as evidence for a third massive stellar component in the system in a long period (>6 yr), eccentric orbit, with dust production occuring at periastron leading to the flare. The presence of a near-IR excess characteristic of hot (~1300 K) dust at every epoch is consistent with the expectation that the subset of persistent dust forming WC stars are short (<1 yr) period binaries, although confirmation will require further observations. Non-LTE model atmosphere analysis of the spectrum reveals the physical properties of the WC9 component to be fully consistent with other Galactic examples. Conclusions. The simultaneous presence of both short period Wolf-Rayet binaries and cool hypergiants within Wd 1 provides compelling evidence for a bifurcation in the post-Main Sequence evolution of massive stars due to binarity. Short period O+OB binaries will evolve directly to the Wolf-Rayet phase, either due to an episode of binary mediated mass loss – likely via case A mass transfer or a contact configuration – or via chemically homogenous evolution. Conversely, long period binaries and single stars will instead undergo a red loop across the HR diagram via a cool hypergiant phase. Future analysis of the full spectroscopic dataset for Wd 1 will constrain the proportion of massive stars experiencing each pathway; hence quantifying the importance of binarity in massive stellar evolution up to and beyond supernova and the resultant production of relativistic remnants.
Resumo:
We report near-infrared radial velocity (RV) measurements of the recently identified donor star in the high mass X-ray binary (HMXB) system OAO 1657−415 obtained in the H band using ISAAC on the Very Large Telescope. Cross-correlation methods were employed to construct a RV curve with a semi-amplitude of 22.1 ± 3.5 km s−1. Combined with other measured parameters of this system it provides a dynamically determined neutron star (NS) mass of 1.42 ± 0.26 M⊙ and a mass of 14.3 ± 0.8 M⊙ for the Ofpe/WN9 highly evolved donor star. OAO 1657−415 is an eclipsing HMXB pulsar with the largest eccentricity and orbital period of any within its class. Of the 10 known eclipsing X-ray binary pulsars OAO 1657−415 becomes the ninth with a dynamically determined NS mass solution and only the second in an eccentric system. Furthermore, the donor star in OAO 1657−415 is much more highly evolved than the majority of the supergiant donors in other HMXBs, joining a small but growing list of HMXBs donors with extensive hydrogen depleted atmospheres. Considering the evolutionary development of OAO 1657−415, we have estimated the binding energy of the envelope of the mass donor and find that there is insufficient energy for the removal of the donor’s envelope via spiral-in, ruling out a common envelope evolutionary scenario. With its non-zero eccentricity and relatively large orbital period the identification of a definitive evolutionary pathway for OAO 1657−415 remains problematic, we conclude by proposing two scenarios which may account for OAO 1657−415 current orbital configuration.
Resumo:
Context. The first soft gamma-ray repeater was discovered over three decades ago, and was subsequently identified as a magnetar, a class of highly magnetised neutron star. It has been hypothesised that these stars power some of the brightest supernovae known, and that they may form the central engines of some long duration gamma-ray bursts. However there is currently no consenus on the formation channel(s) of these objects. Aims. The presence of a magnetar in the starburst cluster Westerlund 1 implies a progenitor with a mass ≥40 M⊙, which favours its formation in a binary that was disrupted at supernova. To test this hypothesis we conducted a search for the putative pre-SN companion. Methods. This was accomplished via a radial velocity survey to identify high-velocity runaways, with subsequent non-LTE model atmosphere analysis of the resultant candidate, Wd1-5. Results. Wd1-5 closely resembles the primaries in the short-period binaries, Wd1-13 and 44, suggesting a similar evolutionary history, although it currently appears single. It is overluminous for its spectroscopic mass and we find evidence of He- and N-enrichement, O-depletion, and critically C-enrichment, a combination of properties that is difficult to explain under single star evolutionary paradigms. We infer a pre-SN history for Wd1-5 which supposes an initial close binary comprising two stars of comparable (~ 41 M⊙ + 35 M⊙) masses. Efficient mass transfer from the initially more massive component leads to the mass-gainer evolving more rapidly, initiating luminous blue variable/common envelope evolution. Reverse, wind-driven mass transfer during its subsequent WC Wolf-Rayet phase leads to the carbon pollution of Wd1-5, before a type Ibc supernova disrupts the binary system. Under the assumption of a physical association between Wd1-5 and J1647-45, the secondary is identified as the magnetar progenitor; its common envelope evolutionary phase prevents spin-down of its core prior to SN and the seed magnetic field for the magnetar forms either in this phase or during the earlier episode of mass transfer in which it was spun-up. Conclusions. Our results suggest that binarity is a key ingredient in the formation of at least a subset of magnetars by preventing spin-down via core-coupling and potentially generating a seed magnetic field. The apparent formation of a magnetar in a Type Ibc supernova is consistent with recent suggestions that superluminous Type Ibc supernovae are powered by the rapid spin-down of these objects.
Resumo:
Thèse--Faculté des sciences de Paris.
Resumo:
The process of adsorption of two dissociating and two non-dissociating aromatic compounds from dilute aqueous solutions on an untreated commercially available activated carbon (B.D.H.) was investigated systematically. All adsorption experiments were carried out in pH controlled aqueous solutions. The experimental isotherms were fitted into four different models (Langmuir homogenous Models, Langmuir binary Model, Langmuir-Freundlich single model and Langmuir-Freundlich double model). Variation of the model parameters with the solution pH was studied and used to gain further insight into the adsorption process. The relationship between the model parameters and the solution pH and pK(a) was used to predict the adsorption capacity in molecular and ionic form of solutes in other solution. A relationship was sought to predict the effect of pH on the adsorption systems and for estimating the maximum adsorption capacity of carbon at any pH where the solute is ionized reasonably well. N-2 and CO2 adsorption were used to characterize the carbon. X-ray Photoelectron Spectroscopy (XPS) measurement was used for surface elemental analysis of the activated carbon.