967 resultados para Nile tilapias
Resumo:
Source of the Nile Fish farm (SON) is located at Bugungu area in Napoleon Gulf, northern Lake Victoria. The proprietors of the farm requested for technical assistance of NaFIRRI to undertake regular environment monitoring of the cage site as is mandatory under the NEMA conditions. NAFIRRI agreed to undertake quarterly environment surveys in the cage area covering selected physical-chemical factors Like water column depth, water transparency, water column temperature, dissolved oxygen, pH and conductivity; nutrient status, algal and invertebrate communities (microinvertebrates/zooplankton and macro-invertebrates/macro-benthos) as well as fish community. The first quarter survey was undertaken in February 2011; the second in May 2011 and the third quarter survey, which is the subject of this report, in September 2011. Results/observations made are presented in this technical report along with a scientific interpretation and discussion of the results with reference to possible impacts of the cage facilities to the water environment and aq-uatic biota, including the natural fish community at and around the cage site.
Resumo:
Nile perch, Lates niloticus Linnaeus, 1758, is a predatory fish of high commercial and recreational value. It can grow to a length of 2 m and a weight of 200 kg. In Uganda, Nile perch was originally found only in Lake Albert and the River Nile below Murchison Falls. The species is, however, widely distributed in Africa, occurring in the Nile system below Murchison Falls, the Congo, Niger, Volta, Senegal and in Lakes Chad and Turkana (Greenwood 1966).
Resumo:
A study was conducted to evaluate the effect of phosphorus supplementation in the
formulated fish diet on carcass quality of Nile tilapia in net-cages suspended in fertilized
earthen ponds. In the experiment 3% di-calcium phosphate (DCP), 3% triple supper
phosphate (TSP) and 7% 16:20 inorganic fertilizer were added as phosphorous sources to
three diets containing fish meal as main protein ingredient. Feeding tilapia in net-cages
with these diets significantly (p
Effect of salinity on food consumption and growth of juvenile Nile tilapia (Oreochromi niloticus L.)
Resumo:
The effect of salinity (0, lO and 20%o, water temperature 28 ± l oC) on food consumption and growth of juvenile Nile tilapia, Oreochromis niloticus L. (9.94 ± 0.15 g) were investigated by feeding group of 20 fish at 2% body weight day. Individual food consumption was measured using X-radiography. There were no significant differences in growth or white muscle protein concentrations among groups. During feed deprivation, weight loss was similar for fish held at O%o and 10 %o salinity, but after 7 days over 50% of the fish maintained at 20%o salinity developed lesions covering 5-25% of the body. No significant relationships were observed between individual specific growth rates and food consumption rates within the groups. The fish in all salinity groups showed a negative correlation between specific growth rate and food conversion ratio. The coefficient of variation for wet weight specific food consumption and the mean share of meal for each fish were used as a measure of social hierarchy strength. A negative correlation was observed between coefficient of variation in food consumption and mean share of meal. The social hierarchy structure was similar in all salinities; 25% of the fish were dominant (18.29% above an equal share of meal) and 30% were subordinate (16.19% below an equal share of meal) and the remainder 45% fish fed theoretical share of meal (MSM, 5.26%).
Resumo:
The effects of stocking density (10, 15, 50 & 75 fish in 65L tank) and ammonia excretion on the growth of Nile tilapia, Oreochromis niloticus (12.19 ± 1.21 g) were investigated. Increasing stocking density of Nile tilapia from 15 fish/tank (2.81 g fish/L) to 75 fish/tank (14.07 g fish/L) resulted in associated increase in ammonia level (1.48 ± 0.87 mg/L to 26.44 ± 11.4 mg/L) and significantly lower growth rates. Significantly better feed conversion ratios were found for fish reared at lower (15 fish/tank) stocking densities compared to higher (75 fish/tank) stocking densities. Individual growth rates were significantly better for fish reared at a lower stocking density 15 fish/tank compared to higher stocking density 75 fish/tank and size variation (coefficient of variation in weight) were positively correlated with stocking density. Although water exchange did not have a significant effect on the growth of Nile tilapia for fish stocked at 10 fish/tank (1.88 g fish/L) and 50 fish/tank (9.38 g fish/L), however, the fish in the higher stocking density (9.38 g fish/L) groups and without water exchange, significantly changed the coloration of their bodies (silver to black) which may be due to the lower oxygen levels combined with higher ammonia levels. Ammonia level increased with increasing stocking density and without water exchange. In this study, it may be suggested that when fish reared at higher stocking densities then water exchange must be taken in to consideration so as to help avoid environmental and physiological stress to the fish.
Resumo:
The effect of salinity (0, 10 & 20‰, water temperature 28 ± 1°C) and food ration (3 and 4.5% bw/day) on food consumption and growth of Nile tilapia, Oreochromis niloticus (10.77 ± 0.21g) were investigated. Individual food consumption was measured using X-radiography technique. Salinities (0, 10 & 20‰) did not have significant effect on the growth rate of groups of Nile tilapia fed at different ration levels (3 & 4.5% bw/day). This study showed that the growth of all-male fish was significantly better than all-female fish for all three salinities and two rations. Salinities from 0 to 20‰ had no effect on growth performance of males or female fish. In the present study, it was evident that fish fed at 3% bw/day ration ate all the food offered and fish fed at 4.5% bw/day did not consumed all amounts. Also, growth performance did not significantly differ among fish fed at 3% bw/day ration level and reared at different salinities. Fish reared under higher salinities (20‰) and fed at higher ration (4.5% bw/day) level had skin lesions and injuries on their body. It was assumed that fish fed at higher ration under higher salinities (20‰) and maintained higher osmoregulatory costs together with osmotic stress may have a negative influence on the appetite of fish. Another possibility that may have affected the appetite could be the unionized ammonia levels that were high. The high-unionized ammonia levels combined with the osmotic stress may have been the cause, or have aided, development of skin lesions and injuries on the fish at higher salinities.
Resumo:
An experiment was carried out in the fields of the Agronomy Field Laboratory, Bangladesh Agricultural University, Mymensingh, Bangladesh to determine the impact of common carp (Cyprinus carpio) and tilapia (Oreochromis niloticus) culture on arthropod population, zoobenthos and weeds of rice field. The treatments were: (1) rice combined with mono sex tilapia, (2) rice combined with common carp, (3) rice combined with a mixed culture of mono sex tilapia and common carp and (4) rice alone. It was observed that tilapia significantly reduced the number of arthropods, green leafhoppers and white leafhoppers in the rice-fish production systems. Benthos analysis revealed significant effects of fish culture on the abundance of molluscs, oligochaete worms and chironomid larvae. Lowest number of benthos was obtained in the treatments with common carp and significant reduction of the weed biomass was observed, especially in the tilapia containing plots. Based on the results of the study it can be suggested that common carp may play an important role in controlling of benthic organisms, while tilapia might be more effective to control terrestrial arthropods and weeds.
Resumo:
Nile perch (Mputa), Lates niloticus was introduced into Lakes Victoria and Kyoga from lake Albert to increase fish production of these lakes by feeding on and converting the small sized haplochromines (Nkejje) which were abundant in these lakes into a larger table fish. It was, however, feared that Nile perch would prey on and deplete stocks of the native fishes and affect fish species diversity. Nile perch became well established and is currently among the three most important commercial species. It is presently the most important export fish commodity from Uganda. Considerable changes have taken place in fishery yield, and in life history characteristics of the Nile perch itself since the predator got established in Lakes Victoria and Kyoga.
Resumo:
This work focuses on four marine sites in the Mediterranean Sea around the Nile Delta, Egypt. Surface water samples were collected seasonally during 2003. The concentrations of some heavy metals in dissolved form (Fe, Mn, Zn, Cu, Ni and Pb) are evaluated. The levels of heavy metals in the coastal waters were 11.92-30.4512µglˉ¹ for Fe; 5.79-17.36 µglˉ¹ for Zn; 0.30-0.83µglˉ¹ for Cu; 0.51-2.90µglˉ¹ for Ni and 0.53-10.31µglˉ¹ for Pb. These are compared, with sites in the estuaries and outlets of the Nile Delta. Fe (19.72-60.33µglˉ¹); Mn (12.63-35.60µglˉ¹); Zn (2.67-22.00); Cu (0.56-1.67µglˉ¹); Ni (1.43-3.73µglˉ¹); Pb (1.72-59.7µglˉ¹). The results showed a remarkable decrease in the concentrations of different heavy metals with increased salinity. Comparing the present data with the minimal risk concentration reported by WQC, the distribution of heavy metals was significantly lower in coastal sea water of the Mediterranean Sea off Egypt. The study indicated also that the average contents of Ni and Pb are slightly high in the area of water exchange than those reported by WQC.
Resumo:
In this study, quality of fresh, slow frozen and quick frozen tilapia fillets and its changes during storage at -18C° were investigated. For preparation the samples, fresh tilapia fillets were frozen by slow and quick frozen methods. Slow frozen samples were prepared by storing the packed fillets directly in the -18 C°. The sprila freezing tunle with -30C° was also used for preparation the quick frozen sample. The quick frozen samples were then stored at -18C°for six months. Proximate composition, fatty acid profiles, TBA, PV, TVN, Total cuont, Drip loss, and sensory evaluation of the samples were determined in every month. Scanning Electron Microscopy (SEM) was used for study on the effects of the frozen condition on the microstructure of the fillets. Results indicated that two different frozen methods had significantly different effects on the quality of the fillets. Most of the proximate composition (protein, moistre and fat) reduced during the storage. Quick frozen filets had significantly (P<0.05) lower reduction than slow frozen samples. All of the chemical quality indexes (PV, TBA, and TVN) increased during the storage as compered to the fresh samples. In these paramethers, the slow freezing had higher changes than quick freezing metods (P<0.05). The microbial properties of the samples showed decrese during the storage. Lower amont of total cuont was observed at the end of the storage time in the quick frozen samples than slow frozen once (P<0.05). The large changes in the fatty acid profiles of the sample were fond in all samples. During the storage SFA and MUF of the samples increased however, the PUFA decresed. A lower change was obseved in the quick frozen samples than slow frozen samples (P<0.05). Drip loss was increased in both frozen samples during the storage period. The percentage of the drip in the slow frozen samples was significantly higer than quick frozen samples (P<0.05). SEM micrographs were also showed that the chnges in the microstructur of the samples was different in the slow and frozen samples. Slow freezing methods had higher damge in the microstructure of the sample then quick freezing mathods. Sensory evaluation of the samples indicated that a better acceptability in the quick frozen samples than slow frozen sample (P<0.05).
Resumo:
This study includes determination and discussion of the texture and heavy mineral compositions of some modem Nile Delta coastal sands (river, coastal dune, beach-face, and nearshore marine) in order to delineate the process and factors that regulate the size distribution of heavy mineral grains comprising these coastal sands. Textural analysis of unseparated bulk samples indicate that the examined four types of sands differ in their mean grain sizes and degree of sorting. However, analysis of size distribution curves of 10 heavy mineral species or group of species in the four environments having the same general shape and nearly similar in that general order of arrangement. However, these curves vary both in median sizes and sorting. The size distribution of a heavy mineral in the Nile Delta coastal sands appear to depend on: (1) range of grain size fractions in each sample, (2) relative availability of heavy mineral in each size grade of the sample, (3) specific gravity of minerals comprising these sands, and (4) some other unknown factor or factors. Results of size measurement of heavy minerals indicated that increasing specific gravity is accompanied by increasing fineness of the heavy minerals. This study may be useful in search for marine placers and understanding the processes of grain-sorting on the sea beaches.
Resumo:
Source of the Nile Fish farm (SON) is located at Bugungu area in Napoleon Gulf, northern Lake Victoria. The proprietors of the farm requested for technical assistance of NaFIRRI to undertake regular environment monitoring of the cage site as is mandatory under the NEMA conditions. As the SON is a key collaborator/client of the institute, NAFIRRI agreed to undertake the assignment subject to facilitation by the client. The institute agreed to conduct quarterly surveys of key environmental parameters at the site including selected physical-chemical and biological factors, nutrient status, column depth, water transparency and sedimentation. Samples and field measurements were to be taken at 3 sites: within and/or close to the fish cages (WIC), upstream (USC) and downstream (DSC) of the cages. The first environmental monitoring survey was undertaken in February 2011; the second in May 2011 and the third in September 2011. The surveys cover physical-chemical parameters, nutrient status, invertebrate and fish communities. The present report presents field observations made for the fourth quarter survey undertaken in November 2011 and provides a scientific interpretation and discussion of the results with reference to possible impacts of the cage facilities to the water environment and the different aquatic biota at and around the cage site including natural fish communities.
Resumo:
As a fishery, the immensely large (c. 68,800 km2 ) Lake Victoria is a unique ecosystem which together with a riverine connection to the Lake Kyoga basin share a common endemic "Victorian" fish fauna (Greenwood 1966). Until the 1950s, the single socio economically most important species of fish in these two lakes was the native Oreochromis esculentus Graham (Graham 1929) even though the lake also contained a second native tilapiine, 0reochromis variabilis , and over 300 other fish species (Beauchamp, 1956).
Resumo:
Genetic biodiversity is the vaflatlOn among individuals within and between units of interbreeding individuals (populations) of a species. It includes inheritable and transmittable differences that occur between individuals andlor popuhitions of a given species through reproductive interaction. There exists enormous variability among individuals andlor populations of a species for most living organisms, and most of this variation is inheritable. differences among individuals arise through mutation and via recombination of genes during meiosis. These ifferences are then transmitted to successive generations through sexual reproduction and maintained in the populations through processes such as natural selection and genetic drift. Unfortunately much of this variation is normally threatened and often in danger of extinction because most focus in conservation of natural resources is put at saving species or habitats than varieties or strains of a species
Resumo:
Source of the Nile (SON) Cage Fish farm is located at Bugungu in Napoleon Gulf, northern Lake Victoria, near the headwaters of the River Nile. NaFIRRI has, through a Public-Private collaborative partnership with SON management, undertaken quarterly monitoring of the cage fish farm since 2011. The objective of the environment monitoring is to track possible environment and biological changes as a result of fish cage operations in the area. The agreed study areas cover selected physical-chemical parameters i.e. water depth, transparency, column temperature, dissolved oxygen, pH and conductivity; nutrient status; and biological parameters i.e. algae, zooplankton, macro-benthos and fish communities. The fourth quarter survey, which is the subject of this report was undertaken during December 2015. Results/observations made are presented in this technical report along with a scientific interpretation and discussion of the results with reference to possible impacts of the cage facilities to the water environment and aquatic biota. The present report presents field observations made for the fourth quarter survey undertaken in December 2015 and provides a scientific interpretation and discussion of the results with reference to possible impacts of the cage facilities to the water environment and the different aquatic biota in and around the fish cage site.