791 resultados para Night vision.
Resumo:
This paper describes a novel vision based texture tracking method to guide autonomous vehicles in agricultural fields where the crop rows are challenging to detect. Existing methods require sufficient visual difference between the crop and soil for segmentation, or explicit knowledge of the structure of the crop rows. This method works by extracting and tracking the direction and lateral offset of the dominant parallel texture in a simulated overhead view of the scene and hence abstracts away crop-specific details such as colour, spacing and periodicity. The results demonstrate that the method is able to track crop rows across fields with extremely varied appearance during day and night. We demonstrate this method can autonomously guide a robot along the crop rows.
Resumo:
For robots operating in outdoor environments, a number of factors, including weather, time of day, rough terrain, high speeds, and hardware limitations, make performing vision-based simultaneous localization and mapping with current techniques infeasible due to factors such as image blur and/or underexposure, especially on smaller platforms and low-cost hardware. In this paper, we present novel visual place-recognition and odometry techniques that address the challenges posed by low lighting, perceptual change, and low-cost cameras. Our primary contribution is a novel two-step algorithm that combines fast low-resolution whole image matching with a higher-resolution patch-verification step, as well as image saliency methods that simultaneously improve performance and decrease computing time. The algorithms are demonstrated using consumer cameras mounted on a small vehicle in a mixed urban and vegetated environment and a car traversing highway and suburban streets, at different times of day and night and in various weather conditions. The algorithms achieve reliable mapping over the course of a day, both when incrementally incorporating new visual scenes from different times of day into an existing map, and when using a static map comprising visual scenes captured at only one point in time. Using the two-step place-recognition process, we demonstrate for the first time single-image, error-free place recognition at recall rates above 50% across a day-night dataset without prior training or utilization of image sequences. This place-recognition performance enables topologically correct mapping across day-night cycles.
Resumo:
Purpose To investigate the effect of different levels of refractive blur on real-world driving performance measured under day and nighttime conditions. Methods Participants included 12 visually normal, young adults (mean age = 25.8 ± 5.2 years) who drove an instrumented research vehicle around a 4 km closed road circuit with three different levels of binocular spherical refractive blur (+0.50 diopter sphere [DS], +1.00 DS, +2.00 DS) compared with a baseline condition. The subjects wore optimal spherocylinder correction and the additional blur lenses were mounted in modified full-field goggles; the order of testing of the blur conditions was randomized. Driving performance was assessed in two different sessions under day and nighttime conditions and included measures of road signs recognized, hazard detection and avoidance, gap detection, lane-keeping, sign recognition distance, speed, and time to complete the course. Results Refractive blur and time of day had significant effects on driving performance (P < 0.05), where increasing blur and nighttime driving reduced performance on all driving tasks except gap judgment and lane keeping. There was also a significant interaction between blur and time of day (P < 0.05), such that the effects of blur were exacerbated under nighttime driving conditions; performance differences were evident even for +0.50 DS blur relative to baseline for some measures. Conclusions The effects of blur were greatest under nighttime conditions, even for levels of binocular refractive blur as low as +0.50 DS. These results emphasize the importance of accurate and up-to-date refractive correction of even low levels of refractive error when driving at night.
Resumo:
Vision-based place recognition involves recognising familiar places despite changes in environmental conditions or camera viewpoint (pose). Existing training-free methods exhibit excellent invariance to either of these challenges, but not both simultaneously. In this paper, we present a technique for condition-invariant place recognition across large lateral platform pose variance for vehicles or robots travelling along routes. Our approach combines sideways facing cameras with a new multi-scale image comparison technique that generates synthetic views for input into the condition-invariant Sequence Matching Across Route Traversals (SMART) algorithm. We evaluate the system’s performance on multi-lane roads in two different environments across day-night cycles. In the extreme case of day-night place recognition across the entire width of a four-lane-plus-median-strip highway, we demonstrate performance of up to 44% recall at 100% precision, where current state-of-the-art fails.
Resumo:
Background In vision, there is a trade-off between sensitivity and resolution, and any eye which maximises information gain at low light levels needs to be large. This imposes exacting constraints upon vision in nocturnal flying birds. Eyes are essentially heavy, fluid-filled chambers, and in flying birds their increased size is countered by selection for both reduced body mass and the distribution of mass towards the body core. Freed from these mass constraints, it would be predicted that in flightless birds nocturnality should favour the evolution of large eyes and reliance upon visual cues for the guidance of activity. Methodology/Principal Findings We show that in Kiwi (Apterygidae), flightlessness and nocturnality have, in fact, resulted in the opposite outcome. Kiwi show minimal reliance upon vision indicated by eye structure, visual field topography, and brain structures, and increased reliance upon tactile and olfactory information. Conclusions/Significance This lack of reliance upon vision and increased reliance upon tactile and olfactory information in Kiwi is markedly similar to the situation in nocturnal mammals that exploit the forest floor. That Kiwi and mammals evolved to exploit these habitats quite independently provides evidence for convergent evolution in their sensory capacities that are tuned to a common set of perceptual challenges found in forest floor habitats at night and which cannot be met by the vertebrate visual system. We propose that the Kiwi visual system has undergone adaptive regressive evolution driven by the trade-off between the relatively low rate of gain of visual information that is possible at low light levels, and the metabolic costs of extracting that information.
Resumo:
Purpose The aim of this study was to systematically investigate the effect of different levels of refractive blur and driver age on night-time pedestrian recognition and determine whether clothing that has been shown to improve pedestrian conspicuity is robust to the effects of blur. Methods Night-time pedestrian recognition was measured for 24 visually normal participants (12 younger M=24.9±4.5 years and 12 older adults M=77.6±5.7 years) for three levels of binocular blur (+0.50 D, +1.00 D, +2.00 D) compared to baseline (optimal refractive correction). Pedestrians walked in place on a closed road circuit and wore one of three clothing conditions: i) everyday clothing, ii) a retro-reflective vest and iii) retro-reflective tape positioned on the extremities in a configuration that conveyed biological motion (known as “biomotion”); the order of conditions was randomized between participants. Pedestrian recognition distances were recorded for each blur and pedestrian clothing combination while participants drove an instrumented vehicle around a closed road course. Results The recognition distances for pedestrians were significantly reduced (p<0.05) by all levels of blur compared to baseline. Pedestrians wearing “biomotion” clothing were recognized at significantly longer distances than for the other clothing configurations in all blur conditions. However, these effects were smaller for the older adults, who had much shorter recognition distances for all conditions tested. Conclusions In summary, even small amounts of blur had a significant detrimental effect on night-time pedestrian recognition. Biomotion retro-reflective clothing was effective, even under moderately degraded visibility conditions, for both young and older drivers.
Resumo:
Background: Falls among hospitalised patients impose a considerable burden on health systems globally and prevention is a priority. Some patient-level interventions have been effective in reducing falls, but others have not. An alternative and promising approach to reducing inpatient falls is through the modification of the hospital physical environment and the night lighting of hospital wards is a leading candidate for investigation. In this pilot trial, we will determine the feasibility of conducting a main trial to evaluate the effects of modified night lighting on inpatient ward level fall rates. We will test also the feasibility of collecting novel forms of patient level data through a concurrent observational sub-study. Methods/design: A stepped wedge, cluster randomised controlled trial will be conducted in six inpatient wards over 14 months in a metropolitan teaching hospital in Brisbane (Australia). The intervention will consist of supplementary night lighting installed across all patient rooms within study wards. The planned placement of luminaires, configurations and spectral characteristics are based on prior published research and pre-trial testing and modification. We will collect data on rates of falls on study wards (falls per 1000 patient days), the proportion of patients who fall once or more, and average length of stay. We will recruit two patients per ward per month to a concurrent observational sub-study aimed at understanding potential impacts on a range of patient sleep and mobility behaviour. The effect on the environment will be monitored with sensors to detect variation in light levels and night-time room activity. We will also collect data on possible patient-level confounders including demographics, pre-admission sleep quality, reported vision, hearing impairment and functional status. Discussion: This pragmatic pilot trial will assess the feasibility of conducting a main trial to investigate the effects of modified night lighting on inpatient fall rates using several new methods previously untested in the context of environmental modifications and patient safety. Pilot data collected through both parts of the trial will be utilised to inform sample size calculations, trial design and final data collection methods for a subsequent main trial.
Resumo:
Aims: Cataract surgery is one of the most common surgeries performed, but its overuse has been reported. The threshold for cataract surgery has become increasingly lenient; therefore, the selection process and surgical need has been questioned. The aim of this study was to evaluate the changes associated with cataract surgery in patient-reported vision-related quality of life (VR-QoL).
Methods: A prospective cohort study was conducted. Consecutive patients referred to cataract clinics in an NHS unit in Scotland were identified. Those listed for surgery were invited to complete a validated questionnaire (TyPE) to measure VR-QoL pre- and post-operatively. TyPE has five different domains (near vision, distance vision, daytime driving, night-time driving, and glare) and a global score of vision. The influence of pre-operative visual acuity (VA) levels, vision, and lens status of the fellow eye on changes in VR-QoL were explored.
Results: A total of 320 listed patients were approached, of whom 36 were excluded. Among the 284 enrolled patients, 229 (81%) returned the questionnaire after surgery. Results revealed that the mean overall vision improved, as reported by patients. Improvements were also seen in all sub-domains of the questionnaire.
Conclusion: The majority of patients appear to have improvement in patient-reported VR-QoL, including those with good pre-operative VA and previous surgery to the fellow eye. VA thresholds may not capture the effects of the quality of life on patients. This information can assist clinicians to make more informed decisions when debating over the benefits of listing a patient for cataract extraction.
Resumo:
BACKGROUND: Central and peripheral vision is needed for object detection. Previous research has shown that visual target detection is affected by age. In addition, light conditions also influence visual exploration. The aim of the study was to investigate the effects of age and different light conditions on visual exploration behavior and on driving performance during simulated driving. METHODS: A fixed-base simulator with 180 degree field of view was used to simulate a motorway route under daylight and night conditions to test 29 young subjects (25-40 years) and 27 older subjects (65-78 years). Drivers' eye fixations were analyzed and assigned to regions of interests (ROI) such as street, road signs, car ahead, environment, rear view mirror, side mirror left, side mirror right, incoming car, parked car, road repair. In addition, lane-keeping and driving speed were analyzed as a measure of driving performance. RESULTS: Older drivers had longer fixations on the task relevant ROI, but had a lower frequency of checking mirrors when compared to younger drivers. In both age groups, night driving led to a less fixations on the mirror. At the performance level, older drivers showed more variation in driving speed and lane-keeping behavior, which was especially prominent at night. In younger drivers, night driving had no impact on driving speed or lane-keeping behavior. CONCLUSIONS: Older drivers' visual exploration behavior are more fixed on the task relevant ROI, especially at night, when driving performance becomes more heterogeneous than in younger drivers.
Resumo:
Federal Aviation Administration, Atlantic City International Airport, N.J.
Resumo:
Clouds are important in weather prediction, climate studies and aviation safety. Important parameters include cloud height, type and cover percentage. In this paper, the recent improvements in the development of a low-cost cloud height measurement setup are described. It is based on stereo vision with consumer digital cameras. The cameras positioning is calibrated using the position of stars in the night sky. An experimental uncertainty analysis of the calibration parameters is performed. Cloud height measurement results are presented and compared with LIDAR measurements.