945 resultados para Ni-30Fe alloy
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Secondary phases such as Laves and carbides are formed during the final solidification stages of nickel based superalloy coatings deposited during the gas tungsten arc welding cold wire process. However, when aged at high temperatures, other phases can precipitate in the microstructure, like the γ″ and δ phases. This work presents a new application and evaluation of artificial intelligent techniques to classify (the background echo and backscattered) ultrasound signals in order to characterize the microstructure of a Ni-based alloy thermally aged at 650 and 950 °C for 10, 100 and 200 h. The background echo and backscattered ultrasound signals were acquired using transducers with frequencies of 4 and 5 MHz. Thus with the use of features extraction techniques, i.e.; detrended fluctuation analysis and the Hurst method, the accuracy and speed in the classification of the secondary phases from ultrasound signals could be studied. The classifiers under study were the recent optimum-path forest (OPF) and the more traditional support vector machines and Bayesian. The experimental results revealed that the OPF classifier was the fastest and most reliable. In addition, the OPF classifier revealed to be a valid and adequate tool for microstructure characterization through ultrasound signals classification due to its speed, sensitivity, accuracy and reliability. © 2013 Elsevier B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Odontologia - FOA
Resumo:
Pós-graduação em Odontologia - FOA
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The aim of this study was to analyze the stress distribution of short implants supporting single unit or splinted crowns by the photo-elasticity method. Four photo-elastic models were produced: A (3.75×7mm); B (3.75×7mm, 3.75×7mm and 3.75×7mm); C (3.75×10mm, 3.75×7mm and 3.75×7mm); D (3.75×13mm, 3.75×7mm and 3.75×7mm). The prostheses were made with Ni-Cr alloy. A load of 100N in the axial and oblique directions was applied, totaling 380 applications, individually capturing their images in each model. The data were randomized and analyzed qualitatively and quantitatively by 2 examiners. The oblique loading was significantly more damaging. The increase in length was favorable for stress distribution (p<0.05). The splinting was beneficial for the transmission of stresses mainly (p<0.05). The splinting of the crowns, as well as increasing the length of the first implant and axial loading was most beneficial in the stress distribution. Short splinted implants behaved better than single unit implants. Increasing of the length of the first implant significantly improved the stress distribution in all analyzed situations.
Resumo:
Pós-graduação em Odontologia Restauradora - ICT
Resumo:
Objectives: The aim of this study was to investigate the internal fit (IF) of glass-infiltrated alumina (ICA - In-Ceram Alumina), yttria-stabilized tetragonal zirconia polycrystals (Y-TZP - IPS e.max ZirCAD), and metal-ceramic (MC - Ni-Cr alloy) crowns. Material and Methods: Sixty standardized resin-tooth replicas of a maxillary first molar were produced for crown placement and divided into 3 groups (n=20 each) according to the core material used (metal, ICA or Y-TZP). The IF of the crowns was measured using the replica technique, which employs a light body polyvinyl siloxane impression material to simulate the cement layer thickness. The data were analyzed according to the surfaces obtained for the occlusal space (OS), axial space (AS) and total mean (TM) using two-way ANOVA with Tukey's multiple comparison test (p<0.05). Results: No differences among the different areas were detected in the MC group. For the Y-TZP and ICA groups, AS was statistically lower than both OS and TM. No differences in AS were observed among the groups. However, OS and TM showed significantly higher values for ICA and Y-TZP groups than MC group. Comparisons of ICA and Y-TZP revealed that OS was significantly lower for Y-TZP group, whereas no differences were observed for TM. Conclusions: The total mean achieved by all groups was within the range of clinical acceptability. However, the metal-ceramic group demonstrated significantly lower values than the all-ceramic groups, especially in OS.
Resumo:
Background: The aim of this study was to compare the shear bond strength between Ni-Cr alloy specimens bonded to air-abraded Ni-Cr, bur-abraded Ni-Cr, etched ceramic and etched enamel substrates using the resin cements RelyX ARC or Enforce. Materials and methods: Ni-Cr specimens were made and sandblasted with Al2O3 airborne-particles. Disc-shaped patterns were made for each of the four experimental substrates: Ni-Cr treated with Al2O3 airborne-particles, Ni-Cr treated with diamond bur abrasion, etched enamel and etched ceramic. Results: Significant differences in shear bond strength were found between the different materials and luting agents evaluated. The Ni-Cr alloy cylinders bonded to Ni-Cr surfaces sandblasted with 50 lm Al2O3 particles and bonded with Enforce achieved the highest bond strength when compared with other substrates (28.9 MPa, p < 0.05). Bur-abraded metal discs had lowest values, regardless the cement used (2.9 and 6.9 MPa for RelyX and Enforce, respectively). Etched enamel and etched ceramic had similar shear bond strengths within cement groups and performed better when RelyX was used. Conclusions: Bonding Ni-Cr to Ni-Cr and ceramic may result in similar and higher bond strength when compared to Ni-Cr/enamel bonding. For metal/metal bonding, higher shear bond strength was achieved with resin cement Enforce, and for metal/ceramic and metal/enamel bonding, RelyX had higher results.
Resumo:
OBJECTIVES: The aim of this study was to investigate the internal fit (IF) of glass-infiltrated alumina (ICA - In-Ceram Alumina), yttria-stabilized tetragonal zirconia polycrystals (Y-TZP - IPS e.max ZirCAD), and metal-ceramic (MC - Ni-Cr alloy) crowns. MATERIAL AND METHODS: Sixty standardized resin-tooth replicas of a maxillary first molar were produced for crown placement and divided into 3 groups (n=20 each) according to the core material used (metal, ICA or Y-TZP). The IF of the crowns was measured using the replica technique, which employs a light body polyvinyl siloxane impression material to simulate the cement layer thickness. The data were analyzed according to the surfaces obtained for the occlusal space (OS), axial space (AS) and total mean (TM) using two-way ANOVA with Tukey s multiple comparison test (p<0.05). RESULTS: No differences among the different areas were detected in the MC group. For the Y-TZP and ICA groups, AS was statistically lower than both OS and TM. No differences in AS were observed among the groups. However, OS and TM showed significantly higher values for ICA and Y-TZP groups than MC group. Comparisons of ICA and Y-TZP revealed that OS was significantly lower for Y-TZP group, whereas no differences were observed for TM. CONCLUSIONS: The total mean achieved by all groups was within the range of clinical acceptability. However, the metal-ceramic group demonstrated significantly lower values than the all-ceramic groups, especially in OS.
Resumo:
Multi-layer hydrogen storage thin films with Mg and MmNi(3.5)(CoAlMn)(1.5) (here Mm denotes La-rich mischmetal) as alternative layers were prepared by direct current magnetron sputtering. Transmission electron microscopy investigation shows that the microstructure of the MmNi(3.5)(CoAlMn)(1.5) and Mg layers are significantly different although their deposition conditions are the same. The MmNi(3.5)(CoAlMn)(1.5) layer is composed of two regions: one is an amorphous region approximately 4 nm thick at the bottom of the layer and the other is a nanocrystalline region on top of the amorphous region. The Mg layer is also composed of two regions: one is a randomly orientated nanocrystalline region 50 nm thick at the bottom of the layer and the other is a columnar crystallite region on top of the nanocrystalline region. These Mg columnar crystallites have their [001] directions parallel to the growth direction and the average lateral size of these columnar crystallites is about 100 nm. A growth mechanism of the multi-layer thin films is discussed based on the experiment results. Wiley-Liss, Inc.
Resumo:
Consideration of the influence of test technique and data analysis method is important for data comparison and design purposes. The paper highlights the effects of replication interval, crack growth rate averaging and curve-fitting procedures on crack growth rate results for a Ni-base alloy. It is shown that an upper bound crack growth rate line is not appropriate for use in fatigue design, and that the derivative of a quadratic fit to the a vs N data looks promising. However, this type of averaging, or curve fitting, is not useful in developing an understanding of microstructure/crack tip interactions. For this purpose, simple replica-to-replica growth rate calculations are preferable. © 1988.
Resumo:
The three phase equilibrium between alloy, spinel solid solution and α-alumina in the Fe-Ni-Al-O system has been fully characterized at 1823K as a function of alloy composition using both experimental and computational methods. The oxygen potential was measured using a solid state cell incorporating yttria-doped thoria as the electrolyte and Cr+ Cr2O3 as the reference electrode. Oxygen concentration of the alloy was determined by an inert gas fusion technique. The composition of the spinel solid solution, formed at the interface between the alloy and an alumina crucible, was determined by EPMA. The variation of the oxygen concentration and potential and composition of the spinel solid solution with mole fraction of nickel in the alloy have been computed using activities in binary Fe-Ni system, free energies of formation of end member spinels FeO•(1+x)Al2O3 and NiO•(1+x)Al2O3 and free energies of solution of oxygen in liquid iron and nickel, available in the literature. Activities in the spinel solid solution were computed using a cation distribution model. The variation of the activity coefficient of oxygen with alloy composition in Fe-Ni-O system was calculated using both the quasichemical model of Jacob and Alcock and the Wagner's model, with the correlation of Chiang and Chang. The computed results for the oxygen potential and the composition of the spinel solid solution are in good agreement with the measurements. The measured oxygen concentration lies between the values computed using models of Wagner and Jacob and Alcock. The results of the study indicate that the deoxidation hyper-surface in multicomponent systems can be computed with useful accuracy using data for end member systems and thermodynamic models.