968 resultados para Neutral point potential balancing


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The problem of scattering of neutral fermions in two-dimensional spacetime is approached with a pseudoscalar potential step in the Dirac equation. Some unexpected aspects of the solutions beyond the absence of Klein's paradox are presented. An apparent paradox concerning the uncertainty principle is solved by introducing the concept of effective Compton wavelength. Added plausibility for the existence of bound-state solutions in a pseudoscalar double-step potential found in a recent Letter is given. (C) 2003 Elsevier B.V. B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The problem of neutral fermions subject to an inversely linear potential is revisited. It is shown that an infinite set of bound-state solutions can be found on the condition that the fermion is embedded in an additional uniform background potential. An apparent paradox concerning the uncertainty principle is solved by introducing the concept of effective Compton wavelength.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The intrinsically relativistic problem of a fermion subject to a pseudoscalar screened Coulomb plus a uniform background potential in two-dimensional space-time is mapped into a Sturm-Liouville. This mapping gives rise to an effective Morse-like potential and exact bounded solutions are found. It is shown that the uniform background potential determinates the number of bound-state solutions. The behaviour of the eigenenergies as well as of the upper and lower components of the Dirac spinor corresponding to bounded solutions is discussed in detail and some unusual results are revealed. An apparent paradox concerning the uncertainty principle is solved by recurring to the concepts of effective mass and effective Compton wavelength. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The problem of neutral fermions subject to a pseudoscalar potential is investigated. Apart from the solutions for E = +/- mc(2), the problem is mapped into the Sturm-Liouville equation. The case of a singular trigonometric tangent potential (similar to tan gamma x) is exactly solved and the complete set of solutions is discussed in some detail. It is revealed that this intrinsically relativistic and true confining potential is able to localize fermions into a region of space arbitrarily small without the menace of particle-antiparticle production.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

CaBi2Nb2O9 (CBNO) thin films deposited on platinum coated silicon substrates by the polymeric precursor method exhibited good structural, dielectric, and piezoelectric characteristics. Capacitance-voltage measurements indicated good ferroelectric polarization switching characteristics. Remanent polarization and drive voltage values were 4.2 mu C/cm(2) and 1.7 V for a maximum applied voltage of 10 V. The film has a piezoelectric coefficient d(33) equal to 60 pm/V, current density of 0.7 mu A/cm(2), and Curie temperature of 940 degrees C. The polar-axis-oriented CBNO is a promising candidate for use in lead-free high Curie point in ferroelectric and piezoelectric devices. (c) 2006 American Institute of Physics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

There are point interactions in one dimension that can be interpreted as self-adjoint extensions (SAEs) of the kinetic energy [KE] operator. Here, we report the results obtained in two recent papers cited in [1]. In the first, we consider point interactions in one dimension in the form of the Fermi pseudo-potential, in one and two-channel cases. In the second, we consider a new type of point interactions that are self-adjoint and effectively energy-dependent. © 2005 American Institute of Physics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This thesis reports on the experimental investigation of controlled spin dependent interactions in a sample of ultracold Rubidium atoms trapped in a periodic optical potential. In such a situation, the most basic interaction between only two atoms at one common potential well, forming a micro laboratory for this atom pair, can be investigated. Spin dependent interactions between the atoms can lead to an intriguing time evolution of the system. In this work, we present two examples of such spin interaction induced dynamics. First, we have been able to observe and control a coherent spin changing interaction. Second, we have achieved to examine and manipulate an interaction induced time evolution of the relative phase of a spin 1/2-system, both in the case of particle pairs and in the more general case of N interacting particles. The first part of this thesis elucidates the spin-changing interaction mechanism underlying many fascinating effects resulting from interacting spins at ultracold temperatures. This process changes the spin states of two colliding particles, while preserving total magnetization. If initial and final states have almost equal energy, this process is resonant and leads to large amplitude oscillations between different spin states. The measured coupling parameters of such a process allow to precisely infer atomic scattering length differences, that e.g. determine the nature of the magnetic ground state of the hyperfine states in Rubidium. Moreover, a method to tune the spin oscillations at will based on the AC-Zeeman effect has been implemented. This allowed us to use resonant spin changing collisions as a quantitative and non-destructive particle pair probe in the optical lattice. This led to a series of experiments shedding light on the Bosonic superfluid to Mott insulator transition. In a second series of experiments we have been able to coherently manipulate the interaction induced time evolution of the relative phase in an ensemble of spin 1/2-systems. For two particles, interactions can lead to an entanglement oscillation of the particle pair. For the general case of N interacting particles, the ideal time evolution leads to the creation of spin squeezed states and even Schrödinger cat states. In the experiment we have been able to control the underlying interactions by a Feshbach resonance. For particle pairs we could directly observe the entanglement oscillations. For the many particle case we have been able to observe and reverse the interaction induced dispersion of the relative phase. The presented results demonstrate how correlated spin states can be engineered through control of atomic interactions. Moreover, the results point towards the possibility to simulate quantum magnetism phenomena with ultracold atoms in optical traps, and to realize and analyze many novel quantum spin states which have not been experimentally realized so far.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Intraoperative major bleeding is a common complication during surgery and can lead to the transfusion of blood products and/or procoagulant drugs. This is a therapeutic challenge, and adherence to guidelines is desirable to preserve blood product resources. The intraoperative administration of fibrinogen concentrate, a pro-coagulant drug, in bleeding patients might reduce the use and therefore the risks associated with blood products.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We consider the Schrödinger equation for a relativistic point particle in an external one-dimensional δ-function potential. Using dimensional regularization, we investigate both bound and scattering states, and we obtain results that are consistent with the abstract mathematical theory of self-adjoint extensions of the pseudodifferential operator H=p2+m2−−−−−−−√. Interestingly, this relatively simple system is asymptotically free. In the massless limit, it undergoes dimensional transmutation and it possesses an infrared conformal fixed point. Thus it can be used to illustrate nontrivial concepts of quantum field theory in the simpler framework of relativistic quantum mechanics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Neutral interstellar helium has been observed by the Interstellar Boundary Explorer (IBEX) since 2009, with a signal-to-noise ratio well above 1000. Because of the geometry of the observations, the signal observed from January to March each year is the easiest to identify. However, as we show via simulations, the portion of the signal in the range of intensities from 10(-3) to 10(-2) of the peak value, previously mostly left out from the analysis, may provide important information about the details of the distribution function of interstellar He gas in front of the heliosphere. In particular, these observations may inform us about possible departures of the parent interstellar He population from equilibrium. We compare the expected distribution of the signal for the canonical assumption of a single Maxwell-Boltzmann population with the distributions for a superposition of the Maxwell-Boltzmann primary population and the recently discovered Warm Breeze, and for a single primary population given by a kappa function. We identify the regions on the sky where the differences between those cases are expected to be the most visible against the background. We discuss the diagnostic potential of the fall peak of the interstellar signal, reduced by a factor of 50 due to the Compton-Getting effect but still above the detection limit of IBEX. We point out the strong energy dependence of the fall signal and suggest that searching for this signal in the data could bring an independent assessment of the low-energy measurement threshold of the IBEX-Lo sensor.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Broadcast spawning marine invertebrates are susceptible to environmental stressors such as climate change, as their reproduction depends on the successful meeting and fertilization of gametes in the water column. Under near-future scenarios of ocean acidification, the swimming behaviour of marine invertebrate sperm is altered. We tested whether this was due to changes in sperm mitochondrial activity by investigating the effects of ocean acidification on sperm metabolism and swimming behaviour in the sea urchin Centrostephanus rodgersii. We used a fluorescent molecular probe (JC-1) and flow cytometry to visualize mitochondrial activity (measured as change in mitochondrial membrane potential, MMP). Sperm MMP was significantly reduced in delta pH -0.3 (35% reduction) and delta pH -0.5 (48% reduction) treatments, whereas sperm swimming behaviour was less sensitive with only slight changes (up to 11% decrease) observed overall. There was significant inter-individual variability in responses of sperm swimming behaviour and MMP to acidified seawater. We suggest it is likely that sperm exposed to these changes in pH are close to their tipping point in terms of physiological tolerance to acidity. Importantly, substantial inter-individual variation in responses of sperm swimming to ocean acidification may increase the scope for selection of resilient phenotypes, which, if heritable, could provide a basis for adaptation to future ocean acidification.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Polyzwitterionic-containing hydrogel materials been proposed for use in biomaterial applications. Polyzwitterions contain anions and cations in the same monomeric unit, unlike polyampholytes which contain them in different monomeric units. The use of cationic and anionic monomers in stoichiometrically equivalent proportions produces charge-balanced polyampholytes (PA) copolymers. Membranes prepared using either betaine-containing (BT) polyzwitterionic copolymers or PA copolymers can share similar properties, but the range of EWCs offered by membranes incorporating BT and PA monomers is greater than that for conventional neutral hydrogels and methacrylic acid-based systems. Here we compare properties of BT-containing and PA-containing copolymer membranes, relevant to their potential as biomedical materials. Membranes of the copolymers were prepared as previously described. Surface energy was determined using a GBX Digidrop (GBX Scientific Instruments), with diidomethane and water as probes. The absorption of proteins was determined by soaking the membranes in 1mg/ml protein solutions for a predetermined time, and measuring UV absorption of the membranes at certain wavelengths. The BT and PA copolymer membranes displayed similar values for the polar components and dispersive components of total surface free energy. This was perhaps not surprising when the structures of the monomers were considered. The BT and PA copolymer membranes displayed differences in their protein absorption over time, with the PA demonstrating higher uptake of protein than the BT. In addition to the aforementioned greater EWC range, the use of BT and PA copolymer membranes also avoids some of the problems associated with net anionicity. Comparison of the BT copolymer with the “pseudo” zwitterionic PA copolymers shows that controlled molecular architecture is required to gain the benefits of balancing the charges present in the copolymers in a way that will make them beneficial to hydrogel design.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An Ab Initio/RRKM study of the reaction mechanism and product branching ratios of neutral-radical ethynyl (C2H) and cyano (CN) radical species with unsaturated hydrocarbons is performed. The reactions studied apply to cold conditions such as planetary atmospheres including Titan, the Interstellar Medium (ISM), icy bodies and molecular clouds. The reactions of C2H and CN additions to gaseous unsaturated hydrocarbons are an active area of study. NASA's Cassini/Huygens mission found a high concentration of C2H and CN from photolysis of ethyne (C2H2) and hydrogen cyanide (HCN), respectively, in the organic haze layers of the atmosphere of Titan. The reactions involved in the atmospheric chemistry of Titan lead to a vast array of larger, more complex intermediates and products and may also serve as a chemical model of Earth's primordial atmospheric conditions. The C2H and CN additions are rapid and exothermic, and often occur barrierlessly to various carbon sites of unsaturated hydrocarbons. The reaction mechanism is proposed on the basis of the resulting potential energy surface (PES) that includes all the possible intermediates and transition states that can occur, and all the products that lie on the surface. The B3LYP/6-311g(d,p) level of theory is employed to determine optimized electronic structures, moments of inertia, vibrational frequencies, and zero-point energy. They are followed by single point higher-level CCSD(T)/cc-vtz calculations, including extrapolations to complete basis sets (CBS) of the reactants and products. A microcanonical RRKM study predicts single-collision (zero-pressure limit) rate constants of all reaction paths on the potential energy surface, which is then used to compute the branching ratios of the products that result. These theoretical calculations are conducted either jointly or in parallel to experimental work to elucidate the chemical composition of Titan's atmosphere, the ISM, and cold celestial bodies.<.