451 resultados para Neurospora crassa
Resumo:
Radiolabel from [3H]myristic acid was incorporated by Neurospora crassa into the core catalytic subunit 1 of cytochrome c oxidase (EC 1.9.3.1), as indicated by immunoprecipitation. This modification of the subunit, which was specific for myristic acid, represents an uncommon type of myristoylation through an amide linkage at an internal lysine, rather than an N-terminal glycine. The [3H]myristate, which was chemically recovered from the radiolabeled subunit peptide, modified an invariant Lys-324, based upon analyses of proteolysis products. This myristoylated lysine is found within one of the predicted transmembrane helices of subunit 1 and could contribute to the environment of the active site of the enzyme. The myristate was identified by mass spectrometry as a component of mature subunit 1 of a catalytically active, purified enzyme. To our knowledge, fatty acylation of a mitochondrially synthesized inner-membrane protein has not been reported previously.
Resumo:
We have developed a system for the isolation of Neurospora crassa mutants that shows altered responses to blue light. To this end we have used the light-regulated promoter of the albino-3 gene fused to the neutral amino acid permease gene mtr. The product of the mtr gene is required for the uptake of neutral aliphatic and aromatic amino acids, as well as toxic analogs such as p-flurophenylalanine or 4-methyltryptophan. mtr trp-2-carrying cells were transformed with the al-3 promoter-mtr wild-type gene (al-3p-mtr+) to obtain a strain with a light-regulated tryptophan uptake. This strain is sensitive to p-fluorophenylalanine when grown under illumination and resistant when grown in the dark. UV mutagenesis of the al-3p-mtr(+)-carrying strain allowed us to isolate two mutant strains, BLR-1 and BLR-2 (blue light regulator), that are light-resistant to p-fluorophenylalanine and have lost the ability to grow on tryptophan. These two strains have a pale-orange phenotype and show down-regulation of all the photoregulated genes tested (al-3, al-1, con-8, and con-10). Mutations in the BLR strains are not allelic with white collar 1 or white collar 2, regulatory genes that are also involved in the response to blue light.
Resumo:
The alpha-crystallin-related heat shock proteins are produced by all eukaryotes, but the role of these proteins in thermoprotection remains unclear. To investigate the function of one of these proteins, we disrupted expression of the single-copy hsp30 gene of Neurospora crassa, using repeat-induced point mutagenesis, and we generated and characterized mutant strains that were deficient in hsp30 synthesis. These strains could grow at high temperature and they acquired thermotolerance from a heat shock. However, the hsp30-defective strains proved to be extremely sensitive to the combined stresses of high temperature and carbohydrate limitation, enforced by the addition of a nonmetabolizable glucose analogue. Under these conditions, their survival was reduced by 90% compared with wild-type cells. This sensitive phenotype was reversed by reintroduction of a functional hsp30 gene into the mutant strains. The mutant cells contained mitochondria from which a 22-kDa protein was readily extracted with detergents, in contrast to its retention by the mitochondria of wild-type cells. Antibodies against hsp30 coimmunoprecipitated a protein also of approximately 22 kDa from wild-type cells. Results of this study suggest that hsp30 may be important for efficient carbohydrate utilization during high temperature stress and that it may interact with other mitochondrial membrane proteins and function as a protein chaperone.
Resumo:
The filamentous fungus Neurospora crassa possesses two nonhomologous high-affinity phosphate permeases, PHO-4 and PHO-5. We have isolated separate null mutants of these permeases, allowing us to study the remaining active transporter in vivo in terms of phosphate uptake and sensitivity to inhibitors. The specificity for the cotransported cation differs for PHO-4 and PHO-5, suggesting that these permeases employ different mechanisms for phosphate translocation. Phosphate uptake by PHO-4 is stimulated 85-fold by the addition of Na+, which supports the idea that PHO-4 is a Na(+)-phosphate symporter. PHO-5 is unaffected by Na+ concentration but is much more sensitive to elevated pH than is PHO-4. Presumably, PHO-5 is a H(+)-phosphate symporter. Na(+)-coupled symport is usually associated with animal cells. The finding of such a system in a filamentous fungus is in harmony with the idea that the fungal and animal kingdoms are more closely related to each other than either is to the plant kingdom.
Resumo:
The sulfur regulatory system of Neurospora crassa is composed of a set of structural genes involved in sulfur catabolism controlled by a genetically defined set of trans-acting regulatory genes. These sulfur regulatory genes include cys-3+, which encodes a basic region-leucine zipper transcriptional activator, and the negative regulatory gene scon-2+. We report here that the scon-2+ gene encodes a polypeptide of 650 amino acids belonging to the expanding beta-transducin family of eukaryotic regulatory proteins. Specifically, SCON2 protein contains six repeated G beta-homologous domains spanning the C-terminal half of the protein. SCON2 represents the initial filamentous fungal protein identified in the beta-transducin group. Additionally, SCON2 exhibits a specific amino-terminal domain that potentially defines another subfamily of beta-transducin homologs. Expression of the scon-2+ gene has been examined using RNA hybridization and gel mobility-shift analysis. The dependence of scon-2+ expression on CYS3 function and the binding of CYS3 to the scon-2+ promoter indicate the presence of an important control loop within the N. crassa sulfur regulatory circuit involving CYS3 activation of scon-2+ expression. On the basis of the presence of beta-transducin repeats, the crucial role of SCON2 in the signal-response pathway triggered by sulfur limitation may be mediated by protein-protein interactions.
Resumo:
Chitosan permeabilizes plasma membrane and kills sensitive filamentous fungi and yeast. Membrane fluidity and cell energy determine chitosan sensitivity in fungi. A five-fold reduction of both glucose (main carbon (C) source) and nitrogen (N) increased 2-fold Neurospora crassa sensitivity to chitosan. We linked this increase with production of intracellular reactive oxygen species (ROS) and plasma membrane permeabilization. Releasing N. crassa from nutrient limitation reduced chitosan antifungal activity in spite of high ROS intracellular levels. With lactate instead of glucose, C and N limitation increased N. crassa sensitivity to chitosan further (4-fold) than what glucose did. Nutrient limitation also increased sensitivity of filamentous fungi and yeast human pathogens to chitosan. For Fusarium proliferatum, lowering 100-fold C and N content in the growth medium, increased 16-fold chitosan sensitivity. Similar results were found for Candida spp. (including fluconazole resistant strains) and Cryptococcus spp. Severe C and N limitation increased chitosan antifungal activity for all pathogens tested. Chitosan at 100 μg ml-1 was lethal for most fungal human pathogens tested but non-toxic to HEK293 and COS7 mammalian cell lines. Besides, chitosan increased 90% survival of Galleria mellonella larvae infected with C. albicans. These results are of paramount for developing chitosan as antifungal.
Resumo:
Chitosan is a natural polymer with antimicrobial activity. Chitosan causes plasma membrane permeabilization and induction of intracellular reactive oxygen species (ROS) in Neurospora crassa. We have determined the transcriptional profile of N. crassa to chitosan and identified the main gene targets involved in the cellular response to this compound. Global network analyses showed membrane, transport and oxidoreductase activity as key nodes affected by chitosan. Activation of oxidative metabolism indicates the importance of ROS and cell energy together with plasma membrane homeostasis in N. crassa response to chitosan. Deletion strain analysis of chitosan susceptibility pointed NCU03639 encoding a class 3 lipase, involved in plasma membrane repair by lipid replacement, and NCU04537 a MFS monosaccharide transporter related to assimilation of simple sugars, as main gene targets of chitosan. NCU10521, a glutathione S-transferase-4 involved in the generation of reducing power for scavenging intracellular ROS is also a determinant chitosan gene target. Ca2+ increased tolerance to chitosan in N. crassa. Growth of NCU10610 (fig 1 domain) and SYT1 (a synaptotagmin) deletion strains was significantly increased by Ca2+ in the presence of chitosan. Both genes play a determinant role in N. crassa membrane homeostasis. Our results are of paramount importance for developing chitosan as an antifungal.
Resumo:
Background: Cutaneous mycoses are common human infections among healthy and immunocompromised hosts, and the anthropophilic fungus Trichophyton rubrum is the most prevalent microorganism isolated from such clinical cases worldwide. The aim of this study was to determine the transcriptional profile of T. rubrum exposed to various stimuli in order to obtain insights into the responses of this pathogen to different environmental challenges. Therefore, we generated an expressed sequence tag (EST) collection by constructing one cDNA library and nine suppression subtractive hybridization libraries. Results: The 1388 unigenes identified in this study were functionally classified based on the Munich Information Center for Protein Sequences (MIPS) categories. The identified proteins were involved in transcriptional regulation, cellular defense and stress, protein degradation, signaling, transport, and secretion, among other functions. Analysis of these unigenes revealed 575 T. rubrum sequences that had not been previously deposited in public databases. Conclusion: In this study, we identified novel T. rubrum genes that will be useful for ORF prediction in genome sequencing and facilitating functional genome analysis. Annotation of these expressed genes revealed metabolic adaptations of T. rubrum to carbon sources, ambient pH shifts, and various antifungal drugs used in medical practice. Furthermore, challenging T. rubrum with cytotoxic drugs and ambient pH shifts extended our understanding of the molecular events possibly involved in the infectious process and resistance to antifungal drugs.
Resumo:
Differences between the respiratory chain of the fungus Paracoccidioides brasiliensis and its mammalian host are reported. Respiration, membrane potential, and oxidative phosphorylation in mitochondria from P. brasiliensis spheroplasts were evaluated in situ, and the presence of a complete (Complex I-V) functional respiratory chain was demonstrated. In succinate-energized mitochondria, ADP induced a transition from resting to phosphorylating respiration. The presence of an alternative NADH-ubiquinone oxidoreductase was indicated by: (i) the ability to oxidize exogenous NADH and (ii) the lack of sensitivity to rotenone and presence of sensitivity to flavone. Malate/NAD(+)-supported respiration suggested the presence of either a mitochondrial pyridine transporter or a glyoxylate pathway contributing to NADH and/or succinate production. Partial sensitivity of NADH/succinate-supported respiration to antimycin A and cyanide, as well as sensitivity to benzohydroxamic acids, suggested the presence of an alternative oxidase in the yeast form of the fungus. An increase in activity and gene expression of the alternative NADH dehydrogenase throughout the yeast`s exponential growth phase was observed. This increase was coupled with a decrease in Complex I activity and gene expression of its subunit 6. These results support the existence of alternative respiratory chain pathways in addition to Complex I, as well as the utilization of NADH-linked substrates by P. brasiliensis. These specific components of the respiratory chain could be useful for further research and development of pharmacological agents against the fungus.
Resumo:
The frequency of opportunistic fungal infection has increased drastically, mainly in patients who are immunocompromised due to organ transplant, leukemia or HIV infection. In spite of this, only a few classes of drugs with a limited array of targets, are available for antifungal therapy. Therefore, more specific and less toxic drugs with new molecular targets is desirable for the treatment of fungal infections. In this context, searching for differences between mitochondrial mammalian hosts and fungi in the classical and alternative components of the mitochondrial respiratory chain may provide new potential therapeutic targets for this purpose.
Resumo:
The protein phosphatase calcineurin is an important mediator connecting calcium-dependent signalling to various cellular responses in multiple organisms. In fungi calcineurin acts largely through regulating Crz1p-like transcription factors. Here we characterize an Aspergillus fumigatus CRZ1 homologue, CrzA and demonstrate its mediation of cellular tolerance to increased concentrations of calcium and manganese. In addition to acute sensitivitiy to these ions, and decreased conidiation, the crzA null mutant suffers altered expression of calcium transporter mRNAs under high concentrations of calcium, and loss of virulence when compared with the corresponding complemented and wild-type strains. We use multiple expression analyses to probe the transcriptional basis of A. fumigatus calcium tolerance identifying several genes having calA and/or crzA dependent mRNA accumulation patterns. We also demonstrate that contrary to previous findings, the gene encoding the Aspergillus nidulans calcineurin subunit homologue, cnaA, is not essential and that the cnaA deletion mutant shares the morphological phenotypes observed in the corresponding A. fumigatus mutant, Delta calA. Exploiting the A. nidulans model system, we have linked calcineurin activity with asexual developmental induction, finding that CrzA supports appropriate developmental induction in a calcineurin and brlA-dependent manner in both species.
Resumo:
Farnesol (FOH) is a nonsterol isoprenold produced by dephosphorylanon of farnesyl pyrophosphate a catabolite of the cholesterol biosynthetic pathway These isoprenoids inhibit proliferation and induce apoptosis Here we show that Aspergillus nidulans MA encoding the apoptosis-Inducing factor (AIF)-like mitochondrial oxidoreductase plays a role in the function of the mitochondrial Complex I Additionally we demonstrated that ndeA B and ndiA encode external and internal alternative NADH dehydrogenases respectively that have a function in FOH resistance When exposed to FOH the Delta aifA and Delta ndeA strains have increased ROS production while Delta ndeB Delta ndeA Delta ndeB and Andul mutant strains showed the same ROS accumulation than in the absence of FOH We observed several compensatory mechanisms affecting the differential survival of these mutants to FOH (C) 2010 Elsevier Inc All rights reserved
Resumo:
The effects of PLC and Pkc inhibitors on Aspergillus nidulans depend on the carbon source. PLC inhibitors Spm and C48/80 delayed the first nuclear division in cultures growing on glucose, but stimulated it in media supplemented with pectin. Less intense were these effects on the mutant transformed with PLC-A gene rupture (AP27). Neomycin also delayed the germination in cultures growing on glucose or pectin; however, on glucose, the nuclear division was inhibited whereas in pectin it was stimulated. These effects were minor in AP27. The effects of Ro-31-8425 and BIM (both Pkc inhibitors) were also opposite for cultures growing on glucose or pectin. On glucose cultures of both strains BIM delayed germination and the first nuclear division, whereas on pectin both parameters were stimulated. Opposite effects were also detected when the cultures were growing on glucose or pectin in the presence of Ro-31-8425.