955 resultados para Networks partner techniques
Resumo:
MOTIVATION: Understanding gene regulation in biological processes and modeling the robustness of underlying regulatory networks is an important problem that is currently being addressed by computational systems biologists. Lately, there has been a renewed interest in Boolean modeling techniques for gene regulatory networks (GRNs). However, due to their deterministic nature, it is often difficult to identify whether these modeling approaches are robust to the addition of stochastic noise that is widespread in gene regulatory processes. Stochasticity in Boolean models of GRNs has been addressed relatively sparingly in the past, mainly by flipping the expression of genes between different expression levels with a predefined probability. This stochasticity in nodes (SIN) model leads to over representation of noise in GRNs and hence non-correspondence with biological observations. RESULTS: In this article, we introduce the stochasticity in functions (SIF) model for simulating stochasticity in Boolean models of GRNs. By providing biological motivation behind the use of the SIF model and applying it to the T-helper and T-cell activation networks, we show that the SIF model provides more biologically robust results than the existing SIN model of stochasticity in GRNs. AVAILABILITY: Algorithms are made available under our Boolean modeling toolbox, GenYsis. The software binaries can be downloaded from http://si2.epfl.ch/ approximately garg/genysis.html.
Resumo:
BACKGROUND Assisted reproductive technology (ART) with washed semen can achieve pregnancy with minimal risk of horizontal and vertical transmission of chronic viral diseases (CVD) such as human immunodeficiency virus (HIV), hepati- tis C virus (HCV) and hepatitis B virus (HBV) among serodiscordant couples. How- ever, few studies have been made of the use made by these couples of ARTs or of the obstetric results achieved. MATERIALS AND METHODS In this retrospective study, 93 men who were seropositive for HIV, HCV or HBV and who underwent assisted reproduction treatment at our centre (Hospital Universitario Virgen de las Nieves, Granada, Spain) were included. Washed semen was tested to detect viral particles. Non-infected women were tested before and after each treatment, as were the neonates at birth and after three months. RESULTS A total of 62 sperm samples were washed, and none were positive for the detec- tion of viral molecules. Semen samples from 34 HBV positive males were not washed since the female partner had immunity to hepatitis B. In total, 38 clinical pregnancies were achieved (22% per cycle and 40.9% per couple) out of 173 cycles initiated, and 28 births were achieved (16.2% per cycle and 30.1% per couple), producing 34 live births. The rate of multiple pregnancies was 21.4%. Obstetric and neonatal results were similar in the groups of couples studied. At follow-up, no seroconversion was detected in the women or neonates. CONCLUSION Sperm washing and intracytoplasmic sperm injection are shown to be a safe and effective option for reducing the risk of transmission or super infection in serodiscordant or concordant couples who wish to have a child. Pregnancies ob- tained by ART in couples when the male is CVD infected achieve good obstetric and neonatal results.
Resumo:
Los sistemas de radio cognitivos son una solución a la deficiente distribución del espectro inalámbrico de frecuencias. Usando acceso dinámico al medio, los usuarios secundarios pueden comunicarse en canales de frecuencia disponibles, mientras los usuarios asignados no están usando dichos canales. Un buen sistema de mensajería de control es necesario para que los usuarios secundarios no interfieran con los usuarios primarios en las redes de radio cognitivas. Para redes en donde los usuarios son heterogéneos en frecuencia, es decir, no poseen los mismos canales de frecuencia para comunicarse, el grupo de canales utilizado para transmitir información de control debe elegirse cuidadosamente. Por esta razón, en esta tesis se estudian las ideas básicas de los esquemas de mensajería de control usados en las redes de radio cognitivas y se presenta un esquema adecuado para un control adecuado para usuarios heterogéneos en canales de frecuencia. Para ello, primero se presenta una nueva taxonomía para clasificar las estrategias de mensajería de control, identificando las principales características que debe cumplir un esquema de control para sistemas heterogéneos en frecuencia. Luego, se revisan diversas técnicas matemáticas para escoger el mínimo número de canales por los cuales se transmite la información de control. Después, se introduce un modelo de un esquema de mensajería de control que use el mínimo número de canales y que utilice las características de los sistemas heterogéneos en frecuencia. Por último, se comparan diversos esquemas de mensajería de control en términos de la eficiencia de transmisión.
Resumo:
The coverage and volume of geo-referenced datasets are extensive and incessantly¦growing. The systematic capture of geo-referenced information generates large volumes¦of spatio-temporal data to be analyzed. Clustering and visualization play a key¦role in the exploratory data analysis and the extraction of knowledge embedded in¦these data. However, new challenges in visualization and clustering are posed when¦dealing with the special characteristics of this data. For instance, its complex structures,¦large quantity of samples, variables involved in a temporal context, high dimensionality¦and large variability in cluster shapes.¦The central aim of my thesis is to propose new algorithms and methodologies for¦clustering and visualization, in order to assist the knowledge extraction from spatiotemporal¦geo-referenced data, thus improving making decision processes.¦I present two original algorithms, one for clustering: the Fuzzy Growing Hierarchical¦Self-Organizing Networks (FGHSON), and the second for exploratory visual data analysis:¦the Tree-structured Self-organizing Maps Component Planes. In addition, I present¦methodologies that combined with FGHSON and the Tree-structured SOM Component¦Planes allow the integration of space and time seamlessly and simultaneously in¦order to extract knowledge embedded in a temporal context.¦The originality of the FGHSON lies in its capability to reflect the underlying structure¦of a dataset in a hierarchical fuzzy way. A hierarchical fuzzy representation of¦clusters is crucial when data include complex structures with large variability of cluster¦shapes, variances, densities and number of clusters. The most important characteristics¦of the FGHSON include: (1) It does not require an a-priori setup of the number¦of clusters. (2) The algorithm executes several self-organizing processes in parallel.¦Hence, when dealing with large datasets the processes can be distributed reducing the¦computational cost. (3) Only three parameters are necessary to set up the algorithm.¦In the case of the Tree-structured SOM Component Planes, the novelty of this algorithm¦lies in its ability to create a structure that allows the visual exploratory data analysis¦of large high-dimensional datasets. This algorithm creates a hierarchical structure¦of Self-Organizing Map Component Planes, arranging similar variables' projections in¦the same branches of the tree. Hence, similarities on variables' behavior can be easily¦detected (e.g. local correlations, maximal and minimal values and outliers).¦Both FGHSON and the Tree-structured SOM Component Planes were applied in¦several agroecological problems proving to be very efficient in the exploratory analysis¦and clustering of spatio-temporal datasets.¦In this thesis I also tested three soft competitive learning algorithms. Two of them¦well-known non supervised soft competitive algorithms, namely the Self-Organizing¦Maps (SOMs) and the Growing Hierarchical Self-Organizing Maps (GHSOMs); and the¦third was our original contribution, the FGHSON. Although the algorithms presented¦here have been used in several areas, to my knowledge there is not any work applying¦and comparing the performance of those techniques when dealing with spatiotemporal¦geospatial data, as it is presented in this thesis.¦I propose original methodologies to explore spatio-temporal geo-referenced datasets¦through time. Our approach uses time windows to capture temporal similarities and¦variations by using the FGHSON clustering algorithm. The developed methodologies¦are used in two case studies. In the first, the objective was to find similar agroecozones¦through time and in the second one it was to find similar environmental patterns¦shifted in time.¦Several results presented in this thesis have led to new contributions to agroecological¦knowledge, for instance, in sugar cane, and blackberry production.¦Finally, in the framework of this thesis we developed several software tools: (1)¦a Matlab toolbox that implements the FGHSON algorithm, and (2) a program called¦BIS (Bio-inspired Identification of Similar agroecozones) an interactive graphical user¦interface tool which integrates the FGHSON algorithm with Google Earth in order to¦show zones with similar agroecological characteristics.
Resumo:
Recently graph theory and complex networks have been widely used as a mean to model functionality of the brain. Among different neuroimaging techniques available for constructing the brain functional networks, electroencephalography (EEG) with its high temporal resolution is a useful instrument of the analysis of functional interdependencies between different brain regions. Alzheimer's disease (AD) is a neurodegenerative disease, which leads to substantial cognitive decline, and eventually, dementia in aged people. To achieve a deeper insight into the behavior of functional cerebral networks in AD, here we study their synchronizability in 17 newly diagnosed AD patients compared to 17 healthy control subjects at no-task, eyes-closed condition. The cross-correlation of artifact-free EEGs was used to construct brain functional networks. The extracted networks were then tested for their synchronization properties by calculating the eigenratio of the Laplacian matrix of the connection graph, i.e., the largest eigenvalue divided by the second smallest one. In AD patients, we found an increase in the eigenratio, i.e., a decrease in the synchronizability of brain networks across delta, alpha, beta, and gamma EEG frequencies within the wide range of network costs. The finding indicates the destruction of functional brain networks in early AD.
Resumo:
This work focuses on the prediction of the two main nitrogenous variables that describe the water quality at the effluent of a Wastewater Treatment Plant. We have developed two kind of Neural Networks architectures based on considering only one output or, in the other hand, the usual five effluent variables that define the water quality: suspended solids, biochemical organic matter, chemical organic matter, total nitrogen and total Kjedhal nitrogen. Two learning techniques based on a classical adaptative gradient and a Kalman filter have been implemented. In order to try to improve generalization and performance we have selected variables by means genetic algorithms and fuzzy systems. The training, testing and validation sets show that the final networks are able to learn enough well the simulated available data specially for the total nitrogen
Resumo:
Due to constant progress in oncology, survival rates of patients (children and adults) with cancer are increasing. Consequently, the reproductive future of young cancer patients needs to be addressed carefully. Fertility preservation techniques are available and issues such as the time available for fertility treatments, patients' age, presence of a partner and patients' personal wishes have to be considered. In Switzerland, a first therapeutic network (Réseau Romand de Cancer et Fertilité), was created in the French speaking part of Switzerland in 2006. Since 2010, a global Swiss network (FertiSave) has been created. The goal of these networks is to maximise the safety and efficacy of fertility preservation options offered to cancer patients without compromising their oncological prognosis. Patients' needs have to be identified, the therapeutic options evaluated rapidly and the optimal treatment promptly implemented in these urgent situations. This article reviews the fertility preservation options currently available and makes recommendations for different specific cancer situations, consistent with the latest scientific evidence and in general agreement with international recommendations.
Resumo:
Advancements in high-throughput technologies to measure increasingly complex biological phenomena at the genomic level are rapidly changing the face of biological research from the single-gene single-protein experimental approach to studying the behavior of a gene in the context of the entire genome (and proteome). This shift in research methodologies has resulted in a new field of network biology that deals with modeling cellular behavior in terms of network structures such as signaling pathways and gene regulatory networks. In these networks, different biological entities such as genes, proteins, and metabolites interact with each other, giving rise to a dynamical system. Even though there exists a mature field of dynamical systems theory to model such network structures, some technical challenges are unique to biology such as the inability to measure precise kinetic information on gene-gene or gene-protein interactions and the need to model increasingly large networks comprising thousands of nodes. These challenges have renewed interest in developing new computational techniques for modeling complex biological systems. This chapter presents a modeling framework based on Boolean algebra and finite-state machines that are reminiscent of the approach used for digital circuit synthesis and simulation in the field of very-large-scale integration (VLSI). The proposed formalism enables a common mathematical framework to develop computational techniques for modeling different aspects of the regulatory networks such as steady-state behavior, stochasticity, and gene perturbation experiments.
A Survey on Detection Techniques to Prevent Cross-Site Scripting Attacks on Current Web Applications
Resumo:
The increasing interest aroused by more advanced forecasting techniques, together with the requirement for more accurate forecasts of tourismdemand at the destination level due to the constant growth of world tourism, has lead us to evaluate the forecasting performance of neural modelling relative to that of time seriesmethods at a regional level. Seasonality and volatility are important features of tourism data, which makes it a particularly favourable context in which to compare the forecasting performance of linear models to that of nonlinear alternative approaches. Pre-processed official statistical data of overnight stays and tourist arrivals fromall the different countries of origin to Catalonia from 2001 to 2009 is used in the study. When comparing the forecasting accuracy of the different techniques for different time horizons, autoregressive integrated moving average models outperform self-exciting threshold autoregressions and artificial neural network models, especially for shorter horizons. These results suggest that the there is a trade-off between the degree of pre-processing and the accuracy of the forecasts obtained with neural networks, which are more suitable in the presence of nonlinearity in the data. In spite of the significant differences between countries, which can be explained by different patterns of consumer behaviour,we also find that forecasts of tourist arrivals aremore accurate than forecasts of overnight stays.
Resumo:
Tässä työssä käsitellään niitä motiiveja, haasteita ja menestystekijöitä, jotka vaikuttavat lisäarvoatuottavassa liiketoimintaverkostossa. Työssä on selvitetty sitä, miten partneriverkostot syntyvät sekä mitkä seikat vaikuttavat siihen jatkuuko yhteistyö vai ei. Motiiveja partneruuteen on tutkittu kirjallisuudesta sekä analysoimalla työssä esitettyä tapausta. Tässä työssä käydään keskustelua myös partneruuden elinkaaresta, jota ei ole käsitellyssä kirjallisuudessa tuotu esille. Työssä esitettyä tapausta arvioitiin lähettämällä siihen liittyneille henkilöille kysely. Kyselyiden lähettämisen jälkeen järjestettiin haastattelu kyselyyn vastanneiden kanssa. Lopputulokset perustuvat pitkälti haastateltujen henkilöiden kanssa käytyihin keskusteluihin. Kävi ilmi, että arvoa tuottavan partneriverkoston yksi tärkeimpiä tavoitteita on saavuttaa jatkuvuutta liiketoiminnallaan. Ainoastaan pitkäaikaisella partneruudella voidaan saavuttaa merkittäviä etuja markkinoilla. Siksi on tärkeätä, jo partnerin valinnassa, kiinnittää huomiota partneruuden jatkuvuuteen pitkällä tähtäimellä. Liiketoimintaverkostossa partneruudesta syntyvät tuotot ja niiden jakaminen on tärkein yksittäinen osaalue. Oleellista partneruuden jatkuvuudelle pitkällä tähtäimellä on jo partneria valittaessa se, että kyetään arvioimaan miten partneruudesta syntyvät tuotot jaetaan tasapuolisesti ja onko partneruudesta syntyvälle liiketoiminnalle jatkuvuutta. Jotta partneriverkostolle asetetut tavoitteet voitaisiin saavuttaa, on tärkeää suunnitella partneriverkoston hallintaa myös operatiivisella tasolla. Lisäksi tärkeää on jakaa verkostolle asetetut yhteiset tavoitteet organisaatioiden sisällä. Jos ylemmänja operatiivisen tason johdon yhteistyö on riittämätöntä, se vaikeuttaa oleellisesti asetettujen tavoitteiden saavuttamista. Tiedon jakaminen aikaisessa vaiheessa sitouttaa eri sidosryhmät paremmin yhteisiin tavoitteisiin.
Resumo:
Les approches multimodales dans l'imagerie cérébrale non invasive sont de plus en plus considérées comme un outil indispensable pour la compréhension des différents aspects de la structure et de la fonction cérébrale. Grâce aux progrès des techniques d'acquisition des images de Resonance Magnetique et aux nouveaux outils pour le traitement des données, il est désormais possible de mesurer plusieurs paramètres sensibles aux différentes caractéristiques des tissues cérébraux. Ces progrès permettent, par exemple, d'étudier les substrats anatomiques qui sont à la base des processus cognitifs ou de discerner au niveau purement structurel les phénomènes dégénératifs et développementaux. Cette thèse met en évidence l'importance de l'utilisation d'une approche multimodale pour étudier les différents aspects de la dynamique cérébrale grâce à l'application de cette approche à deux études cliniques: l'évaluation structurelle et fonctionnelle des effets aigus du cannabis fumé chez des consommateurs réguliers et occasionnels, et l'évaluation de l'intégrité de la substance grise et blanche chez des jeunes porteurs de la prémutations du gène FMR1 à risque de développer le FXTAS (Fragile-X Tremor Ataxia Syndrome). Nous avons montré que chez les fumeurs occasionnels de cannabis, même à faible concentration du principal composant psychoactif (THC) dans le sang, la performance lors d'une tâche visuo-motrice est fortement diminuée, et qu'il y a des changements dans l'activité des trois réseaux cérébraux impliqués dans les processus cognitifs: le réseau de saillance, le réseau du contrôle exécutif, et le réseau actif par défaut (Default Mode). Les sujets ne sont pas en mesure de saisir les saillances dans l'environnement et de focaliser leur attention sur la tâche. L'augmentation de la réponse hémodynamique dans le cortex cingulaire antérieur suggère une augmentation de l'activité introspective. Une investigation des ef¬fets au niveau cérébral d'une exposition prolongée au cannabis, montre des changements persistants de la substance grise dans les régions associées à la mémoire et au traitement des émotions. Le niveau d'atrophie dans ces structures corrèle avec la consommation de cannabis au cours des trois mois précédant l'étude. Dans la deuxième étude, nous démontrons des altérations structurelles des décennies avant l'apparition du syndrome FXTAS chez des sujets jeunes, asymptomatiques, et porteurs de la prémutation du gène FMR1. Les modifications trouvées peuvent être liées à deux mécanismes différents. Les altérations dans le réseau moteur du cervelet et dans la fimbria de l'hippocampe, suggèrent un effet développemental de la prémutation. Elles incluent aussi une atrophie de la substance grise du lobule VI du cervelet et l'altération des propriétés tissulaires de la substance blanche des projections afférentes correspondantes aux pédoncules cérébelleux moyens. Les lésions diffuses de la substance blanche cérébrale peu¬vent être un marquer précoce du développement de la maladie, car elles sont liées à un phénomène dégénératif qui précède l'apparition des symptômes du FXTAS. - Multimodal brain imaging is becoming a leading tool for understanding different aspects of brain structure and function. Thanks to the advances in Magnetic Resonance imaging (MRI) acquisition schemes and data processing techniques, it is now possible to measure different parameters sensitive to different tissue characteristics. This allows for example to investigate anatomical substrates underlying cognitive processing, or to disentangle, at a pure structural level degeneration and developmental processes. This thesis highlights the importance of using a multimodal approach for investigating different aspects of brain dynamics by applying this approach to two clinical studies: functional and structural assessment of the acute effects of cannabis smoking in regular and occasional users, and grey and white matter assessment in young FMR1 premutation carriers at risk of developing FXTAS. We demonstrate that in occasional smokers cannabis smoking, even at low concentration of the main psychoactive component (THC) in the blood, strongly decrease subjects' performance on a visuo-motor tracking task, and globally alters the activity of the three brain networks involved in cognitive processing: the Salience, the Control Executive, and the Default Mode networks. Subjects are unable to capture saliences in the environment and to orient attention to the task; the increase in Hemodynamic Response in the Anterior Cingulate Cortex suggests an increase in self-oriented mental activity. A further investigation on long term exposure to cannabis, shows a persistent grey matter modification in brain regions associated with memory and affective processing. The degree of atrophy in these structures also correlates with the estimation of drug use in the three months prior the participation to the study. In the second study we demonstrate structural changes in young asymptomatic premutation carriers decades before the onset of FXTAS that might be related to two different mechanisms. Alteration of the cerebellar motor network and of the hippocampal fimbria/ fornix, may reflect a potential neurodevelopmental effect of the premutation. These include grey matter atrophy in lobule VI and modification of white matter tissue property in the corresponding afferent projections through the Middle Cerebellar Peduncles. Diffuse hemispheric white matter lesions that seem to appear closer to the onset of FXTAS and be related to a neurodegenerative phenomenon may mark the imminent onset of FXTAS.
Resumo:
Many classification systems rely on clustering techniques in which a collection of training examples is provided as an input, and a number of clusters c1,...cm modelling some concept C results as an output, such that every cluster ci is labelled as positive or negative. Given a new, unlabelled instance enew, the above classification is used to determine to which particular cluster ci this new instance belongs. In such a setting clusters can overlap, and a new unlabelled instance can be assigned to more than one cluster with conflicting labels. In the literature, such a case is usually solved non-deterministically by making a random choice. This paper presents a novel, hybrid approach to solve this situation by combining a neural network for classification along with a defeasible argumentation framework which models preference criteria for performing clustering.
Resumo:
This thesis addresses the issue of the moving boundaries between family and friends' roles in personal networks, adopting a life-course perspective and using Switzerland as a case study. In a period of major changes in personal life happening in contemporary Western societies, understanding the organization of personal networks intertwined with the unfolding of individual life courses is of prime importance in facing new challenges with regard to social integration. The data stem from a representative national survey carried out in 2011 named Family tiMes, including 803 individuals born either in 1950-1955 or in 1970-1975. An innovative research design was adopted, combing cross-sectional ego-centered network data and retrospective longitudinal life-course data. The results show continuing boundaries between family and friends' roles and that family keeps a prominent role in personal networks despite the notable importance of friendship ties. One relationship stands out above all, that with the partner, followed quite a few steps behind by those with children. Regarding life courses, de-standardization tendencies were found in family formation and also a persistent gendering of occupational trajectories. Two kinds of life trajectories are particularly intertwined with personal networks, co-residence and partnership trajectories, both related to the unfolding of family life. In particular, transition to parenthood functions as a turning point in individuals' lives, deeply transforming their sociability. Finally, a twofold pluralization process was identified, affecting simultaneously the organization of personal networks and the unfolding of individual life courses. This thesis contributes to the literature on the sociology of family and personal life, and to fruitful interlinkage between the network approach and the life-course perspective.
Resumo:
Through a combined approach integrating RNA-Seq, SNP-array, FISH and PCR techniques, we identified two novel t(15;21) translocations leading to the inactivation of RUNX1 and its partners SIN3A and TCF12. One is a complex t(15;21)(q24;q22), with both breakpoints mapped at the nucleotide level, joining RUNX1 to SIN3A and UBL7-AS1 in a patient with myelodysplasia. The other is a recurrent t(15;21)(q21;q22), juxtaposing RUNX1 and TCF12, with an opposite transcriptional orientation, in three myeloid leukemia cases. Since our transcriptome analysis indicated a significant number of differentially expressed genes associated with both translocations, we speculate an important pathogenetic role for these alterations involving RUNX1.