963 resultados para Network topology


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Secure communications between large number of sensor nodes that are randomly scattered over a hostile territory, necessitate efficient key distribution schemes. However, due to limited resources at sensor nodes such schemes cannot be based on post deployment computations. Instead, pairwise (symmetric) keys are required to be pre-distributed by assigning a list of keys, (a.k.a. key-chain), to each sensor node. If a pair of nodes does not have a common key after deployment then they must find a key-path with secured links. The objective is to minimize the keychain size while (i) maximizing pairwise key sharing probability and resilience, and (ii) minimizing average key-path length. This paper presents a deterministic key distribution scheme based on Expander Graphs. It shows how to map the parameters (e.g., degree, expansion, and diameter) of a Ramanujan Expander Graph to the desired properties of a key distribution scheme for a physical network topology.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Live migration of multiple Virtual Machines (VMs) has become an indispensible management activity in datacenters for application performance, load balancing, server consolidation. While state-of-the-art live VM migration strategies focus on the improvement of the migration performance of a single VM, little attention has been given to the case of multiple VMs migration. Moreover, existing works on live VM migration ignore the inter-VM dependencies, and underlying network topology and its bandwidth. Different sequences of migration and different allocations of bandwidth result in different total migration times and total migration downtimes. This paper concentrates on developing a multiple VMs migration scheduling algorithm such that the performance of migration is maximized. We evaluate our proposed algorithm through simulation. The simulation results show that our proposed algorithm can migrate multiple VMs on any datacenter with minimum total migration time and total migration downtime.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Diffusion imaging can map anatomical connectivity in the living brain, offering new insights into fundamental questions such as how the left and right brain hemispheres differ. Anatomical brain asymmetries are related to speech and language abilities, but less is known about left/right hemisphere differences in brain wiring. To assess this, we scanned 457 young adults (age 23.4±2.0 SD years) and 112 adolescents (age 12-16) with 4-Tesla 105-gradient high-angular resolution diffusion imaging. We extracted fiber tracts throughout the brain with a Hough transform method. A 70×70 connectivity matrix was created, for each subject, based on the proportion of fibers intersecting 70 cortical regions. We identified significant differences in the proportions of fibers intersecting left and right hemisphere cortical regions. The degree of asymmetry in the connectivity matrices varied with age, as did the asymmetry in network topology measures such as the small-world effect.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The human connectome has recently become a popular research topic in neuroscience, and many new algorithms have been applied to analyze brain networks. In particular, network topology measures from graph theory have been adapted to analyze network efficiency and 'small-world' properties. While there has been a surge in the number of papers examining connectivity through graph theory, questions remain about its test-retest reliability (TRT). In particular, the reproducibility of structural connectivity measures has not been assessed. We examined the TRT of global connectivity measures generated from graph theory analyses of 17 young adults who underwent two high-angular resolution diffusion (HARDI) scans approximately 3 months apart. Of the measures assessed, modularity had the highest TRT, and it was stable across a range of sparsities (a thresholding parameter used to define which network edges are retained). These reliability measures underline the need to develop network descriptors that are robust to acquisition parameters.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Network topology and routing are two important factors in determining the communication costs of big data applications at large scale. As for a given Cluster, Cloud, or Grid system, the network topology is fixed and static or dynamic routing protocols are preinstalled to direct the network traffic. Users cannot change them once the system is deployed. Hence, it is hard for application developers to identify the optimal network topology and routing algorithm for their applications with distinct communication patterns. In this study, we design a CCG virtual system (CCGVS), which first uses container-based virtualization to allow users to create a farm of lightweight virtual machines on a single host. Then, it uses software-defined networking (SDN) technique to control the network traffic among these virtual machines. Users can change the network topology and control the network traffic programmingly, thereby enabling application developers to evaluate their applications on the same system with different network topologies and routing algorithms. The preliminary experimental results through both synthetic big data programs and NPB benchmarks have shown that CCGVS can represent application performance variations caused by network topology and routing algorithm.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Content delivery networks (CDNs) are an essential component of modern website infrastructures: edge servers located closer to users cache content, increasing robustness and capacity while decreasing latency. However, this situation becomes complicated for HTTPS content that is to be delivered using the Transport Layer Security (TLS) protocol: the edge server must be able to carry out TLS handshakes for the cached domain. Most commercial CDNs require that the domain owner give their certificate's private key to the CDN's edge server or abandon caching of HTTPS content entirely. We examine the security and performance of a recently commercialized delegation technique in which the domain owner retains possession of their private key and splits the TLS state machine geographically with the edge server using a private key proxy service. This allows the domain owner to limit the amount of trust given to the edge server while maintaining the benefits of CDN caching. On the performance front, we find that latency is slightly worse compared to the insecure approach, but still significantly better than the domain owner serving the content directly. On the security front, we enumerate the security goals for TLS handshake proxying and identify a subtle difference between the security of RSA key transport and signed-Diffie--Hellman in TLS handshake proxying; we also discuss timing side channel resistance of the key server and the effect of TLS session resumption.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An ad hoc network is composed of mobile nodes without any infrastructure. Recent trends in applications of mobile ad hoc networks rely on increased group oriented services. Hence multicast support is critical for ad hoc networks. We also need to provide service differentiation schemes for different group of users. An efficient application layer multicast (APPMULTICAST) solution suitable for low mobility applications in MANET environment has been proposed in [10]. In this paper, we present an improved application layer multicast solution suitable for medium mobility applications in MANET environment. We define multicast groups with low priority and high priority and incorporate a two level service differentiation scheme. We use network layer support to build the overlay topology closer to the actual network topology. We try to maximize Packet Delivery Ratio. Through simulations we show that the control overhead for our algorithm is within acceptable limit and it achieves acceptable Packet Delivery Ratio for medium mobility applications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

802.11 WLANs are characterized by high bit error rate and frequent changes in network topology. The key feature that distinguishes WLANs from wired networks is the multi-rate transmission capability, which helps to accommodate a wide range of channel conditions. This has a significant impact on higher layers such as routing and transport levels. While many WLAN products provide rate control at the hardware level to adapt to the channel conditions, some chipsets like Atheros do not have support for automatic rate control. We first present a design and implementation of an FER-based automatic rate control state machine, which utilizes the statistics available at the device driver to find the optimal rate. The results show that the proposed rate switching mechanism adapts quite fast to the channel conditions. The hop count metric used by current routing protocols has proven itself for single rate networks. But it fails to take into account other important factors in a multi-rate network environment. We propose transmission time as a better path quality metric to guide routing decisions. It incorporates the effects of contention for the channel, the air time to send the data and the asymmetry of links. In this paper, we present a new design for a multi-rate mechanism as well as a new routing metric that is responsive to the rate. We address the issues involved in using transmission time as a metric and presents a comparison of the performance of different metrics for dynamic routing.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Because of frequent topology changes and node failures, providing quality of service routing in mobile ad hoc networks becomes a very critical issue. The quality of service can be provided by routing the data along multiple paths. Such selection of multiple paths helps to improve reliability and load balancing, reduce delay introduced due to route rediscovery in presence of path failures. There are basically two issues in such a multipath routing Firstly, the sender node needs to obtain the exact topology information. Since the nodes are continuously roaming, obtaining the exact topology information is a tough task. Here, we propose an algorithm which constructs highly accurate network topology with minimum overhead. The second issue is that the paths in the path set should offer best reliability and network throughput. This is achieved in two ways 1) by choice of a proper metric which is a function of residual power, traffic load on the node and in the surrounding medium 2) by allowing the reliable links to be shared between different paths.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In developing countries, a high rate of growth in the demand for electric energy is felt, and so the addition of new generating units becomes inevitable. In deregulated power systems, private generating stations are encouraged to add new generations. Some of the factors considered while placing a new generating unit are: availability of esources, ease of transmitting power, distance from the load centre, etc. Finding the most appropriate locations for generation expansion can be done by running repeated power flows and carrying system studies like analyzing the voltage profile, voltage stability, loss analysis, etc. In this paper a new methodology is proposed which will mainly consider the existing network topology. A concept of T-index is introduced in this paper, which considers the electrical distances between generator and load nodes. This index is used for ranking the most significant new generation expansion locations and also indicates the amount of permissible generations that can be installed at these new locations. This concept facilitates for the medium and long term planning of power generation expansions within the available transmission corridors. Studies carried out on an EHV equivalent 10-bus system and IEEE 30 bus systems are presented for illustration purposes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present a mechanism for amplitude death in coupled nonlinear dynamical systems on a complex network having interactions with a common environment like external system. We develop a general stability analysis that is valid for any network topology and obtain the threshold values of coupling constants for the onset of amplitude death. An important outcome of our study is a universal relation between the critical coupling strength and the largest nonzero eigenvalue of the coupling matrix. Our results are fully supported by the detailed numerical analysis for different network topologies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

TCP attacks are the major problem faced by Mobile Ad hoc Networks (MANETs) due to its limited network and host resources. Attacker traceback is a promising solution which allows a victim to identify the exact location of the attacker and hence enables the victim to take proper countermeasure near attack origins, for forensics and to discourage attackers from launching the attacks. However, attacker traceback in MANET is a challenging problem due to dynamic network topology, limited network and host resources such as memory, bandwidth and battery life. We introduce a novel method of TCP attacker Identification in MANET using the Traffic History - MAITH. Based on the comprehensive evaluation based on simulations, we showed that MAITH can successfully track down the attacker under diverse mobile multi-hop network environment with low communication, computation, and memory overhead.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mobile ad-hoc network is a wireless ad-hoc network with dynamic network topology. The Dynamicity, due to the random node movement, and scarcity of resources lead to a challenge in monitoring the nodes in a MANET. Monitoring the lack of resources (bandwidth, buffer, and energy), misbehavior, and mobility at node level remains, a challenge. In a MANET the proposed protocol uses both static as well as mobile agents, where the mobile agents migrate to different clusters of the zones respectively, collect the node status information periodically, and provide a high level information to the static agent (which resides at the central node) by analyzing the raw information at the nodes. This, in turn, reduces the network traffic and conserves the workload of the central node, where a static agent is available with high level information and in coordination with other modules. The protocol has been tested in different size MANETs with variable number of nodes and applications. The results shown in the simulation indicates the effectiveness of the protocol.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Many networks such as social networks and organizational networks in global companies consist of self-interested agents. The topology of these networks often plays a crucial role in important tasks such as information diffusion and information extraction. Consequently, growing a stable network having a certain topology is of interest. Motivated by this, we study the following important problem: given a certain desired network topology, under what conditions would best response (link addition/deletion) strategies played by self-interested agents lead to formation of a stable network having that topology. We study this interesting reverse engineering problem by proposing a natural model of recursive network formation and a utility model that captures many key features. Based on this model, we analyze relevant network topologies and derive a set of sufficient conditions under which these topologies emerge as pairwise stable networks, wherein no node wants to delete any of its links and no two nodes would want to create a link between them.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We analytically study the role played by the network topology in sustaining cooperation in a society of myopic agents in an evolutionary setting. In our model, each agent plays the Prisoner's Dilemma (PD) game with its neighbors, as specified by a network. Cooperation is the incumbent strategy, whereas defectors are the mutants. Starting with a population of cooperators, some agents are switched to defection. The agents then play the PD game with their neighbors and compute their fitness. After this, an evolutionary rule, or imitation dynamic is used to update the agent strategy. A defector switches back to cooperation if it has a cooperator neighbor with higher fitness. The network is said to sustain cooperation if almost all defectors switch to cooperation. Earlier work on the sustenance of cooperation has largely consisted of simulation studies, and we seek to complement this body of work by providing analytical insight for the same. We find that in order to sustain cooperation, a network should satisfy some properties such as small average diameter, densification, and irregularity. Real-world networks have been empirically shown to exhibit these properties, and are thus candidates for the sustenance of cooperation. We also analyze some specific graphs to determine whether or not they sustain cooperation. In particular, we find that scale-free graphs belonging to a certain family sustain cooperation, whereas Erdos-Renyi random graphs do not. To the best of our knowledge, ours is the first analytical attempt to determine which networks sustain cooperation in a population of myopic agents in an evolutionary setting.