65 resultados para Nestin
Resumo:
Neural Crest cells (NCC) constitute a unique embryonic cell population that arises between the prospective epidermis and the dorsal aspect of the neural tube of vertebrates. NCC migrate ventromedially and dorsolaterally throughout the developing embryo giving rise to the peripheral nervous system constituents and melanocytes that ultimately reside in the skin and hair follicles respectively. Mice and humans with mutations in the Endothelin receptor b (Ednrb) gene manifest strikingly similar phenotypes characterized by hypopigmentation, hearing loss and megacolon these are due to absence of melanocytes in the skin and inner ear and lack of enteric ganglia in the distal part of the gut, respectively. Piebald lethal mice and humans with Hirschsprung's disease or Waardenburg syndrome carry different mutations in the Ednrb gene. The major goals of this project were to determine whether the action of Ednrb in NCC is required prior to commitment of these cells to the melanocytic lineage and to investigate its potential participation in the actual process of commitment. In order to achieve these goals transgenic mice that express Ednrb under two different regulatory elements were created. The first, Dct-Ednrb, expresses Ednrb under the control of the DOPAchrome tautomerase (Dct) promoter to direct expression to already committed melanocyte precursors. The second, Nes-Ednrb, expresses Ednrb under the regulation of the human nestin gene second enhancer to direct expression to pre-migratory NCC. Crosses of the Dct-Ednrb mouse with piebald lethal showed that the transgene was capable of rescuing the hypopigmentation phenotype of the later. This result indicates that the action of Ednrb after NCC commit to the melanocytic lineage is sufficient for normal melanocyte development. The Dct-Ednrb was further crossed with two other hypopigmentation mutants that carry mutations in the transcription factors Sox10 and Pax3. The transgene rescued the phenotype of the Sox10 mutant only. This suggests that Ednrb interacts with Sox10 but not with Pax3 during melanocyte development. The Nes-Ednrb mice developed a hypopigmentation phenotype that was augmented when crossed with piebald lethal or lethal spotting (mutation in Edn3, the ligand for Ednrb) mice but was rescued by over expression of Edn3. These results suggest that alterations in Ednrb expression early in development affect melanocyte development. This study provides novel information necessary to better understand the early embryonic development of NCC, clarifies specific interactions between different melanogenic genes and, could eventually help in the implementation of therapies for human pigmentary genetic disorders. ^
Resumo:
Neural crest cells (NCC) are a unique population of cells in vertebrates that arise between the presumptive epidermis and the dorsal most region of the neural tube. During neurulation, NCC migrate to many regions of the body to give rise to a wide variety of cell types. NCC that originate from the neural tube at the levels of somite 1-7 colonize the gut and give rise to the enteric ganglia. The endothelin signaling pathway has been shown to be crucial for proper development of some neural crest derivatives. Mice and humans with mutations in the Endothelin receptor b (Ednrb) gene exhibit similar phenotypes characterized by hypopigmentation, hearing loss, and megacolon. Thesephenotypes are due to lack of melanocytes in the skin, inner ear and enteric ganglia in the distal portion of the colon, respectively. It is well established that Ednrb is required early during the embryonic development for normal innervation of the gut. However, it is not clear if Ednrb acts on enteric neuron precursor cells or in pre-committed NC precursors. Additionally, it is controversial whether the action of Ednrb is cell autonomous or non- autonomous. We generated transgenic mice that express Ednrb under the control of the Nestin second intron enhancer (Nes) which drives expression to pre-migrating NCC. These mice were crosses to the spontaneous mouse mutant piebald lethal, which carriers a null mutation in Ednrb and exhibits enteric aganglionosis. The Nes-Ednrb was capable of rescuing the aganglianosis phenotype of piebald lethal mutants demonstrating that expression of Ednrb in pre-committed precursors is sufficient for normal enteric ganglia development. This study provides insight in early embryonic development of NCC and could eventually have potential use in cellular therapies for Hirschsprung's disease.
Resumo:
High-grade Brainstem Glioma (BSG), also known as Diffuse Intrinsic Pontine Glioma (DIPG), is an incurable pediatric brain cancer. Increasing evidence supports the existence of regional differences in gliomagenesis such that BSG is considered a distinct disease from glioma of the cerebral cortex (CG). In an effort to elucidate unique characteristics of BSG, we conducted expression analysis of mouse PDGF-B-driven BSG and CG initiated in Nestin progenitor cells and identified a short list of expression changes specific to the brainstem gliomagenesis process, including abnormal upregulation of paired box 3 (Pax3). In the neonatal mouse brain, Pax3 expression marks a subset of brainstem progenitor cells, while it is absent from the cerebral cortex, mirroring its regional expression in glioma. Ectopic expression of Pax3 in normal brainstem progenitors in vitro shows that Pax3 inhibits apoptosis. Pax3-induced inhibition of apoptosis is p53-dependent, however, and in the absence of p53, Pax3 promotes proliferation of brainstem progenitors. In vivo, Pax3 enhances PDGF-B-driven gliomagenesis by shortening tumor latency and increasing tumor penetrance and grade, in a region-specific manner, while loss of Pax3 function extends survival of PDGF-B-driven;p53-deficient BSG-bearing mice by 33%. Importantly, Pax3 is regionally expressed in human glioma as well, with high PAX3 mRNA characterizing 40% of human BSG, revealing a subset of tumors that significantly associates with PDGFRA alterations, amplifications of cell cycle regulatory genes, and is exclusive of ACVR1 mutations. Collectively, these data suggest that regional Pax3 expression not only marks a novel subset of BSG but also contributes to PDGF-B-induced brainstem gliomagenesis.
Resumo:
Diffuse intrinsic pontine glioma (DIPG) is a rare and incurable brain tumor that arises predominately in children and involves the pons, a structure that along with the midbrain and medulla makes up the brainstem. We have previously developed genetically engineered mouse models of brainstem glioma using the RCAS/Tv-a system by targeting PDGF-B overexpression, p53 loss, and H3.3K27M mutation to Nestin-expressing brainstem progenitor cells of the neonatal mouse. Here we describe a novel mouse model targeting these same genetic alterations to Pax3-expressing cells, which in the neonatal mouse pons consist of a Pax3+/Nestin+/Sox2+ population lining the fourth ventricle and a Pax3+/NeuN+ parenchymal population. Injection of RCAS-PDGF-B into the brainstem of Pax3-Tv-a mice at postnatal day 3 results in 40% of mice developing asymptomatic low-grade glioma. A mixture of low- and high-grade glioma results from injection of Pax3-Tv-a;p53(fl/fl) mice with RCAS-PDGF-B and RCAS-Cre, with or without RCAS-H3.3K27M. These tumors are Ki67+, Nestin+, Olig2+, and largely GFAP- and can arise anywhere within the brainstem, including the classic DIPG location of the ventral pons. Expression of the H3.3K27M mutation reduces overall H3K27me3 as compared with tumors without the mutation, similar to what has been previously shown in human and mouse tumors. Thus, we have generated a novel genetically engineered mouse model of DIPG, which faithfully recapitulates the human disease and represents a novel platform with which to study the biology and treatment of this deadly disease.
Resumo:
Human cytomegalovirus (HCMV) causes congenital neurological lifelong disabilities. The study analyzed 10 HCMV-infected human fetuses at 21 weeks of gestation to evaluate the characteristics and pathogenesis of brain injury related to congenital human CMV (cCMV) infection. Specifically, tissues from cortical and white matter areas, subventricular zone, thalamus, hypothalamus, hippocampus, basal ganglia and cerebellum were analysed by: i) immunohistochemistry (IHC) to detect HCMV-infected cell distribution, ii) hematoxylin-eosin staining to evaluate histological damage and iii) real-time PCR to quantify tissue viral load (HCMV-DNA). Viral tropism was assessed by double IHC to detect HCMV-antigens and neural/neuronal markers: nestin (expressed in early differentiation stage), doublecortin (DCX, identifying neuronal precursor cells) and neuronal nuclei (NeuN, identifying mature neurons). HCMV-positive cells and viral DNA were found in the brain of 8/10 (80%) fetuses. For these cases, brain damage was classified in mild (n=4, 50%), moderate (n=3, 37.5%) and severe (n=1, 12.5%) based on presence of i) diffuse astrocytosis, microglial activation and vascular changes; ii) occasional (in mild) or multiple (in moderate/severe) microglial nodules and iii) necrosis (in severe). The highest median HCMV-DNA level was found in the hippocampus (212 copies/5ng of humanDNA [hDNA], range: 10-7,505) as well as the highest mean HCMV-infected cell value (2.9 cells, range: 0-23), followed by that detected in subventricular zone (1.8 cells, range: 0-19). This suggests a preferential HCMV tropism for immature neuronal cells, residing in these regions, confirmed by the detection of DCX and nestin in 94% and 63.3% of HCMV-positive cells, respectively. NeuN was not found among HCMV-positive cells and was nearly absent in the brain with severe damage, suggesting HCMV does not infect mature neurons and immature HCMV-infected neuronal cells do not differentiate into neurons. HCMV preferential tropism in immature neural/neuronal cells delays/inhibits their differentiation interfering with brain development processes that lead to structural and functional brain defects.